Что такое потенциал покоя в физиологии. Значение мембранного потенциала покоя для различных тканей

Установлено, что наиболее важными ионами, определяющими мембранные потенциалы клеток, являются неорганические ионы К + , Na + , СГ, а также в ряде случаев Са 2 + . Хорошо известно, что концентрации этих ионов в цитоплазме и в межклеточной жидкости различаются в десятки раз.

Из табл. 11.1 видно, что концентрация ионов К + внутри клетки в 40-60 раз выше, чем в межклеточной жидкости, тогда как для Na + и СГ распределение концентраций противоположное. Неравномерное распределение концентраций этих ионов по обе стороны мембраны обеспечивается как их различной проницаемостью, так и сильным электрическим полем мембраны, которое определяется ее потенциалом покоя.

Действительно, в состоянии покоя суммарный поток ионов через мембрану равен нулю, и тогда из уравнения Не- рнста - Планка следует, что

Таким образом, в покое градиенты концентрации - и

электрического потенциала -- на мембране направлены

противоположно друг другу и поэтому в покоящейся клетке высокая и постоянная разность концентраций основных ионов обеспечивает поддержание на мембране клетки электрического напряжения, которое и называют равновесным мембранным потенциалом.

В свою очередь возникающий на мембране потенциал покоя препятствует выходу ионов из клетки К + и чрезмерному входу в нее СГ, поддерживая тем самым их концентрационные градиенты на мембране.

Полное выражение для мембранного потенциала, учитывающее потоки диффузии этих трех видов ионов, было получено Гольдманом, Ходжкиным и Катцем:

где Р к, P Na , Р С1 - проницаемость мембраны для соответствующих ионов.

Уравнение (11.3) с высокой точностью определяет мембранные потенциалы покоя различных клеток. Из него следует, что для мембранного потенциала покоя важны не абсолютные величины проницаемостей мембраны для различных ионов, а их отношения, так как, разделив обе части дроби под знаком логарифма, например, на Р к, мы перейдем к относительным проницаемостям ионов.

В тех случаях, когда проницаемость одного из этих ионов значительно больше, чем других, уравнение (11.3) переходит в уравнение Нернста (11.1) для этого иона.

Из табл. 11.1 видно, что мембранный потенциал покоя клеток близок к потенциалу Нернста для ионов К + и СВ, но значительно отличается от него по Na + . Это свидетельствует

0 том, что в покое мембрана хорошо проницаема для ионов К + и СГ, тогда как для ионов Na + ее проницаемость очень низка.

Несмотря на то что равновесный потенциал Нернста для СГ наиболее близок к потенциалу покоя клетки, последний имеет преимущественно калиевую природу. Это обусловлено тем, что высокая внутриклеточная концентрация К + не может существенно уменьшиться, так как ионы К + должны уравновешивать внутри клетки объемный отрицательный заряд анионов. Внутриклеточные анионы представляют собой в основном крупные органические молекулы (белки, остатки органических кислот ит.п.), которые не могут пройти через каналы в клеточной мембране. Концентрация этих анионов в клетке практически постоянна и их суммарный отрицательный заряд препятствует значительному выходу калия из клетки, поддерживая вместе с Na-K-насосом его высокую внутриклеточную концентрацию . Однако основная роль в первоначальном установлении внутри клетки высокой концентрации ионов калия и низкой концентрации ионов натрия принадлежит Na-K-насосу.

Распределение ионов С1 устанавливается в соответствии с мембранным потенциалом, поскольку в клетке нет специальных механизмов поддержания концентрации СГ. Поэтому вследствие отрицательного заряда хлора его распределение оказывается обратным по отношению к распределению калия на мембране (см. табл. 11.1). Таким образом, концентрационные диффузии К + из клетки и С1 в клетку практически уравновешиваются мембранным потенциалом покоя клетки.

Что касается Na + , то в покое его диффузия направлена в клетку под действием как градиента концентрации, так и электрического поля мембраны и вход Na + в клетку ограничивается в покое только малой проницаемостью мембраны для натрия (закрыты натриевые каналы). Действительно, Ходжкин и Катц экспериментально установили, что в состоянии покоя проницаемости мембраны аксона кальмара для К + , Na + и СГ относятся как 1: 0,04: 0,45. Таким образом, в состоянии покоя клеточная мембрана малопроницаема только для Na + , а для СГ она проницаема почти так же хорошо, как и для К + . В нервных клетках проницаемость для СГ обычно ниже, чем для К + , но в мышечных волокнах проницаемость для СГ даже несколько преобладает.

Несмотря на малую проницаемость клеточной мембраны для Na + в покое, существует, хотя и весьма малый, пассивный перенос Na + в клетку. Этот ток Na + должен был бы приводить к снижению разности потенциалов на мембране и к выходу К + из клетки, что вело бы в конечном итоге к выравниванию концентраций Na + и К + по обе стороны мембраны. Этого не происходит благодаря работе Na + - К + -насоса, компенсирующего токи утечки Na + и К + и поддерживающего таким образом нормальные значения внутриклеточных концентраций этих ионов и, следовательно, нормальную величину потенциала покоя клетки.

Для большинства клеток мембранный потенциал покоя составляет (-бО)-(-ЮО) мВ. На первый взгляд может показаться, что это малая величина, но надо учесть, что толщина мембраны тоже мала (8-10 нм), так что напряженность электрического поля в клеточной мембране огромна и составляет около 10 млн вольт на 1 м (или 100 кВ на 1 см):

Воздух, например, не выдерживает такой напряженности электрического поля (электрический пробой в воздухе наступает при 30 кВ/см), а мембрана выдерживает. Это нормальное условие ее деятельности, поскольку именно такое электрическое поле необходимо для поддержания разности концентраций ионов натрия, калия и хлора на мембране.

Величина потенциала покоя, различная у клеток, может изменяться при изменении условий их жизнедеятельности. Так, нарушение биоэнергетических процессов в клетке, сопровождающееся падением внутриклеточного уровня макро- эргических соединений (в частности, АТФ), прежде всего исключает компоненту потенциала покоя, связанную с работой Ма + -К + -АТФ-азы.

Повреждение клетки приводит обычно к повышению проницаемости клеточных мембран, в результате чего различия в проницаемости мембраны для ионов калия и натрия уменьшаются; потенциал покоя при этом уменьшается, что может вызвать нарушение ряда функций клетки, например возбудимости.

  • Поскольку внутриклеточная концентрация калия поддерживается почти постоянной, то даже относительно небольшие изменения внеклеточной концентрации К* могут оказывать заметное влияние на потенциалпокоя и на деятельность клетки. Подобные изменения концентрации К"в плазме крови происходят при некоторых патологиях (например, припочечной недостаточности).

Потенциал покоя

Мембраны, в том чикле плазматические, в принципе непроницаемы для заряженных частиц. Правда, в мембране имеется Na + /K + -АТФ-аза (Nа + /К + -АТР-аза), осуществляющая активный перенос ионов Na + из клетки в обмен на ионы К + . Этот транспорт энергозависим и сопряжен с гидролизом АТФ (АТР). За счет работы «Nа + ,К + -насоса» поддерживается неравновесное распределение ионов Na + и К + между клеткой и окружающей средой. Поскольку расщепление одной молекулы АТФ обеспечивает перенос трех ионов Na + (из клетки) и двух ионов К + (в клетку), этот транспорт электрогенен, т. е. цитоплазма клетки заряжена отрицательно по отношению к внеклеточному пространству.

Электрохимический потенциал. Содержимое клетки заряжено отрицательно по отношению к внеклеточному пространству. Основная причина возникновения на мембране электрического потенциала (мембранного потенциала Δψ,- существование специфических ионных каналов. Транспорт ионов через каналы происходит по градиенту концентрации или под действием мембранного потенциала. В невозбужденной клетке часть К + -каналов находится в открытом состоянии и ионы К + постоянно диффундируют из в окружающую среду (по градиенту концентрации). Покидая клетку, ионы К + уносят положительный заряд, что создает потенциал покоя равный примерно -60 мВ. Из коэффициентов проницаемости различных ионов видно, что каналы, проницаемые для Na + и Cl – , преимущественно закрыты. Ионы фосфата и органические анионы, например белки, практически не могут проходить через мембраны. С помощью уравнения Нернста можно показать, что мембранный потенциал в первую очередь определяется ионами К + , которые вносят основной вклад в проводимость мембраны.

Ионные каналы. В мембранах имеются каналы, проницаемые для ионов Na + , К + , Са 2+ и Cl – . Эти каналы чаще всего находятся в закрытом состоянии и открываются лишь на короткое время. Каналы подразделяются на потенциал-управляемые (или электровозбудимые), например быстрые Na + -каналы, и лиганд-управляемые (или хемовозбудимые), например никотиновые холинэргические . Каналы - это интегральные мембранные белки, состоящие из многих субъединиц. В зависимости от изменения мембранного потенциала или взаимодействия с соответствующими лигандами, нейромедиаторами и нейромодуляторами, белки-рецепторы могут находиться в одном их двух конформационных состояний, что и определяет проницаемость канала («открыт» - «закрыт» - и т.д.).

Нервной клетки под действием химического сигнала (реже электрического импульса) приводит к возникновению потенциала действия . Это означает, что потенциал покоя -60 мВ скачком изменяется на +30 мВ и спустя 1 мс принимает исходное значение. Процесс начинается с открывания Nа + -канала. Ионы Na + устремляются в клетку (по градиенту концентрации), что вызывает локальное обращение знака мембранного потенциала. При этом Na + -каналы тотчас закрываются, т. е. поток ионов Na + в клетку длится очень короткое время. В связи с изменением мембранного потенциала открываются (на несколько мс) потенциал-управляемые К + -каналы и ионы К + устремляются в обратном направлении, из клетки. В результате мембранный потенциал принимает первоначальное значение, и даже превышает на короткое время потенциал покоя . После этого вновь становится возбудимой.

За один импульс через мембрану проходит небольшая часть ионов Na + и К + , и концентрационные градиенты обоих ионов сохраняются (в клетке выше уровень К + , а вне клетки выше уровень Na +). Поэтому по мере получения клеткой новых импульсов процесс локального обращения знака мембранного потенциала может повторяться многократно. Распространение потенциала действия по поверхности нервной клетки основано на том, что локальное обращение мембранного потенциала стимулирует открывание соседних потенциал-управляемых ионных каналов, в результате чего возбуждение распространяется в виде деполяризационной волны на всю клетку.

Мембрана всех живых клеток поляризована. Внутренняя сторона мембраны несет отрицательный заряд по сравнению с межклеточным пространством (рис. 1). Величина заряда, который несет мембрана называется мембранным потенциалом (МП) . В невозбудимых тканях МП низкий, и составляет около -40 мВ. В возбудимых тканях он высокий, около -60 - -100 мВ и называется потенциалом покоя (ПП) .

Потенциал покоя, как и любой мембранный потенциал формируется за счет избирательной проницаемости клеточной мембраны. Как известно, плазмолемма состоит из липидного бислоя, через который движение заряженных молекул затруднено. Белки, встроенные в мембрану, могут избирательно изменять проницаемость мембраны для различных ионов, в зависимости от приходящих стимулов. При этом, для формирования потенциала покоя ведущую роль играют ионы калия, кроме них важны ионы натрия и хлора.

Рис. 1. Концентрации и распределение ионов с внутренней и внешней стороны мембраны.

Большинство ионов распределяются неравномерно с внутренней и внешней стороны клетки (рис. 1). Внутри клетки концентрация ионов калия выше, а натрия и хлора – ниже, чем снаружи. В состоянии покоя мембрана проницаема для ионов калия и практически непроницаема для ионов натрия и хлора. Несмотря на то, что калий может свободно выходить из клетки, его концентрации остаются неизменными благодаря отрицательному заряду на внутренней стороне мембраны. Таким образом, на калий действуют две силы, находящиеся в равновесии: осмотические (градиент концентрации К +) и электрические (заряд мембраны), благодаря чему число входящих в клетку ионов калия равно выходящим. Движение калия осуществляется через калиевые каналы утечки , открытые в состоянии покоя. Величину заряда мембраны, при которой ионы калия находятся в равновесии можно вычислить по уравнению Нернста:

Где Е к - равновесный потенциал для К + ; R - газовая постоянная; Т - абсолютная температура; F - число Фарадея; n - валентность К + (+1), [К + н ] - [К + вн ] - наружная и внутренняя концентрации К + .

Если подставить в уравнение значения из таблицы на рис. 43, то мы получим величину равновесного потенциала, равную примерно -95 мВ. Это значение вписывается в диапазон мембранного потенциала возбудимых клеток. Отличия ПП разных клеток (даже возбудимых) могут возникать по трем причинам:

  • отличия внутриклеточной и внеклеточной концентраций ионов калия в разных тканях (в таблице приведены данные по среднестатистическому нейрону);
  • натрий-калиевая АТФаза может вносить свой вклад в значение заряда, так как она выводит из клетки 3 Na + в обмен на 2 К + ;
  • несмотря на минимальную проницаемость мембраны для натрия и хлора, эти ионы все-таки могут попадать в клетки, хоть и от 10 до 100 раз хуже, по сравнению с калием.

Чтобы учесть проникновение других ионов в клетку существует уравнение Нернста-Гольдмана:

где Е m - мембранный потенциал; R - газовая постоянная; Т - аб­солютная температура; F - число Фарадея; Р K , P Na и Р Cl - константы проницаемости мембраны для К + Na + и Сl, соответственно; + н ], , , , [Сl - н ] и [Сl - вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Такое уравнение позволяет установить более точную величину ПП. Обычно, мембрана оказывается на несколько мВ менее поляризована, по сравнению с равновесным потенциалом для К + .

Потенциал действия (ПД) может возникать в возбудимых клетках. Если на нерв или мышцу нанести раздражение выше порога возбуждения, то ПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет кратковременная перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной, после чего восстановится ПП. Это кратковременное изменение ПП, происходящее при возбуждении клетки называется потенциалом действия.

Возникновение ПД возможно благодаря тому, что в отличие от ионов калия, ионы натрия далеки от равновесия. Если подставить в уравнение Нернста натрий вместо калия, то мы получим равновесный потенциал, равный примерно +60 мВ. Во время ПД, происходит кратковременное увеличение проницаемости для Na + . При этом, натрий начнет проникать в клетку под действием двух сил: по градиенту концентрации и по заряду мембраны, стремясь подстроить заряд мембраны под свой равновесный потенциал. Движение натрия осуществляется по потенциал-зависимым натриевым каналам , которые открываются в ответ на смещение мембранного потенциала, после чего сами инактивируются.

Рис. 2. Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

На записи ПД выглядит как кратковременный пик (рис. 2), имеющий несколько фаз.

  1. Деполяризация (фаза нарастания) (рис. 2) – увеличение проницаемости для натрия из-за открытия натриевых каналов. Натрий стремится к своему равновесному потенциалу, но не достигает его, так как канал успевает инактивироваться.
  2. Реполяризация – возвращение заряда к величине потенциала покоя. Помимо калиевых каналов утечки здесь подключаются потенциал-зависимые калиевые каналы (активируются от деполяризации). В это время калий выходит из клетки, возвращаясь к своему равновесному потенциалу.
  3. Гиперполяризация (не всегда) – возникает в случаях, если равновесный потенциал по калию превышает по модулю ПП. Возвращение к ПП происходит после возвращения к равновесному потенциалу по К + .

Во время ПД происходит изменение полярности заряда мембраны. Фаза ПД, при которой заряд мембраны положителен, называется овершутом (рис. 2).

Для генерации ПД оказывается очень важной система активации и инактивации потенциал-управляемых натриевых каналов (рис. 3). Эти каналы имеют две створки: активационную (М-ворота) и инактивационную (Н-ворота) . В состоянии покоя М-ворота открыты, а Н-ворота закрыты. Во время деполяризации мембраны М-ворота быстро открываются, а Н-ворота начинают закрываться. Ток натрия в клетку возможен пока М-ворота уже открыты, а Н-ворота еще не закрылись. Вход натрия приводит к дальнейшей деполяризации клетки, приводя к открытию большего количества каналов и запуская цепочку положительной обратной связи. Деполяризация мембраны будет продолжаться до тех пор, пока все потенциал-управляемые натриевые каналы не окажутся инактивированными, что происходит на пике ПД. Минимальная величина стимула, приводящая к возникновению ПД называется пороговой . Таким образом, возникший ПД будет подчиняться закону «все или ничего» и его величина не будет зависеть от величины стимула, вызвавшего ПД.

Благодаря Н-воротам инактивация канала происходит раньше, чем потенциал на мембране достигнет равновесной величины по натрию. После прекращения поступления натрия в клетку, происходит реполяризация за счет выходящих из клетки ионов калия. При этом к каналам утечки в этом случае подключаются еще и потениал-активируемые калиевые каналы. Во время реполяризации, в быстром натриевом канале быстро закрываются М-ворота. Н-ворота открываются гораздо медленнее и остаются закрытыми еще некоторое время после возвращения заряда к потенциалу покоя. Этот период принято называть периодом рефрактерности .


Рис. 3. Работа потенциал-управляемого натриевого канала.

Концентрации ионов внутри клетки восстанавливает натрий-калиевая АТФаза, которая с затратой энергии в виде АТФ откачивает из клетки 3 иона натрия и закачивает 2 иона калия.

По немиелинизированному волокну или по мембране мышцы потенциал действия распространяется непрерывно. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до порогового значения, в результате чего на соседнем участке возникает деполяризация. Главную роль в возникновении потенциала на новом участке мембраны предыдущий участок. При этом на каждом участки сразу после ПД наступает период рефрактерности, за счет которое ПД распространяется однонаправленно. При прочих равных условиях распространение потенциала действия по немиелинизированному аксону происходит тем быстрее, чем больше диаметр волокна. У млекопитающих скорость составляет 1-4 м/с. Поскольку у беспозвоночных животных отсутствует миелин, в гигантских аксонах кальмара скорость ПД может достигать 100 м/c.

По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах немиелинизированных волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до порогового значения, что приводит к возникновению в них новых потенциалов действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-й, 4-й и даже 5-й, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля. Сальтаторное проведение увеличивает скорость проведения ПД 15-20 раз до 120 м/с.

https://shishadrugs.com Работа нейронов

Нервная система состоит из нейронов и глиальных клеток. Однако, главную роль в проведении и передаче нервных импульсов играют нейроны. Они получают информацию от множества клеток по дендритам, анализируют ее и передают или не передают на следующий нейрон.

Передача нервного импульса с одной клетки на другую осуществляется с помощью синапсов. Различают два основных типа синапсов: электрические и химические (рис. 4). Задача любого синапса – передать информацию с пресинаптической мембраны (мембрана аксона) на постсинаптическую (мембрана дендрита, другого аксона, мышцы или другого органа-мишени). Большинство синапсов нервной системы образуется между окончанием аксонов и дендритами, которые в области синапса образуют дендритные шипики.

Преимущество электрического синапса состоит в том, что сигнал с одной клетки на другую переходит без задержки. Кроме того, такие синапсы не утомляются. Для этого пре- и постсинаптические мембраны соединены поперечными мостиками, через которые ионы из одной клетки могут перемещаться в другую. Однако, существенным минусом такой системы является отсутствие однонаправленной передачи ПД. То есть, он может передаваться как с пресинаптической мембраны на постсинаптическую, так и наоборот. Поэтому, такая конструкция встречается достаточно редко и в основном – в нервной системе беспозвоночных.


Рис. 4. Схема строения химического и электрического синапсов.

Химический синапс весьма распространен в природе. О устроен сложнее, так как необходима система преобразования электрического импульса в химический сигнал, затем, вновь в электрический импульс. Все это приводит к возникновению синаптической задержки , которая может составить 0,2-0,4 мс. Кроме того, может произойти истощение запасов химического вещества, что приведет к утомлению синапса. Однако, такой синапс обеспечивает однонаправленность передачи ПД, что является его главным преимуществом.

Рис. 5. Схема работы (а) и электронная микрофотография (б) химического синапса.

В состоянии покоя окончание аксона, или пресинаптическое окончание , содержит мембранные пузырьки (везикулы) с нейромедиатором. Поверхность везикул заряжена отрицательно, чтобы предотвратить связывание с мембраной, и покрыта специальными белками, и принимающими участие в высвобождении везикул. В каждом пузырьке находится одинаковое количество химического вещества, которое называется квантом нейромедиатора. Нейромедиаторы весьма разнообразны по химическому строению, однако, большинство из них производятся прямо в окончании. Поэтому, в нем могут находиться системы, для синтеза химического посредника, а также аппарат Гольджи и митохондрии.

Постсинаптическая мембрана содержит рецепторы к нейромедиатору. Рецепторы могут быть в виде как ионных каналов, открывающихся при контакте со своим лигандом (ионотропные ), так и мембранными белками, запускающими внутриклеточный каскад реакций (метаботропные ). Один нейромедиатор может иметь несколько как ионотропных, так и метаботропных рецепторов. При этом, часть из них может быть возбуждающими, а часть – тормозными. Таким образом, реакцию клетки на нейромедиатор будет определять тип рецептора на ее мембране, и разные клетки могут совершенно по-разному реагировать на одно и то же химическое вещество.

Между пре- и постсинаптической мембраной располагается синаптическая щель , шириной 10-15 нм.

При приходе ПД на пресинаптическое окончание, на нем открываются потенциал-активируемые кальциевые каналы и ионы кальция входят в клетку. Кальций связывается с белками на поверхности везикул, что приводит к их транспортировке к пресинаптической мембране с последующим слиянием мембран. После такого взаимодействия нейромедиатор оказывается в синаптической щели (рис. 5) и может связаться со своим рецептором.

Ионотропные рецепторы – это лиганд-активируемые ионные каналы. Это значит, что канал открывается только в присутствии определенного химического вещества. Для разных нейромедиаторов это могут быть натриевые, кальциевые или хлорные каналы. Ток натрия и кальция вызывает деполяризацию мембраны, поэтому такие рецепторы называют возбуждающими. Хлорный ток приводит к гиперполяризации, что затрудняет генерацию ПД. Следовательно, такие рецепторы называют тормозными.

Метаботропные рецепторы к нейромедиаторам относят к классу рецепторов, ассоцированных с G-белками (GPCR). Эти белки запускают разнообразные внутриклеточные каскады реакций, приводящих в конечном итоге либо к дальнейшей передачи возбуждения, либо к торможению.

После передачи сигнала необходимо быстро удалить нейромедиатор из синаптической щели. Для этого в щели присутствуют либо ферменты расщепляющие, нейромедиатор, либо на пресинаптическом окончании или соседних глиальных клетках могут располагаться транспортеры, закачивающие медиатор в клетки. В последнем случае он может использоваться повторно.

Каждый нейрон получает импульсы от 100 до 100 000 синапсов. Одиночная деполяризация на одном дендрите не приведет к дальнейшей передаче сигнала. На нейрон могут приходит одновременно множество как возбуждающих, так и тормозных стимулов. Все они суммируются на соме нейрона. Такая суммация называется пространственной . Далее, может возникнуть или не возникнуть (в зависимости от пришедших сигналов) ПД в области аксонного холмика . Аксонный холмик – это область аксона, примыкающая к соме и обладающая минимальным порогом ПД. Далее импульс распространяется по аксону, конец которого может сильно ветвиться и образовывать синапсы со множеством клеток. Помимо пространственной, существует временная суммация . Она происходит в случае, поступления часто повторяющихся импульсов от одного дендрита.

Помимо классических синапсов между аксонами и дендритами или их шипиками, существуют также синапсы, модулирующие передачу в других синапсах (рис. 6). К ним относят аксо-аксональные синапсы. Такие синапсы способны усиливать или тормозить синаптическую передачу. То есть, если на окончание аксона, образующего аксо-шипиковый синапс, пришел ПД, а в это время по аксо-аксональному синапсу на него пришел тормозный сигнал, высвобождения нейромедиатора в аксо-шипиковом синапсе не произойдет. Аксо-дендритные синапсы могут изменять проведение мембраной ПД на пути от шипика к соме клетки. Также существуют аксо-соматические синапсы, которые могут влиять на суммацию сигнала в области сомы нейрона.

Таким образом, существует огромное многообразие различных синапсов, отличающихся по составу нейромедиаторов, рецепторов и их местоположению. Все это обеспечивает разнообразие реакций и пластичность нервной системы.

Рис. 6. Разнообразие синапсов в нервной системе.

Введение
Нервная система
регулирует деятельность
организма благодаря
проведению информации
(возбуждения) по сети
нервных клеток.
Цель нейрофизиологии –
это понять биологические
механизмы, которые лежат
в основе проведения
информации по нервной
системе.

Нейроны проводят информацию на большие
расстояния с помощью электрических сигналов,
которые распространяются по аксону.
Используется специальный тип электрических
сигналов – нервный импульс или потенциал
действия.
Потенциал действия является основным
носителем информации в нервной системе

Мембранный потенциал покоя нейрона

Процесс генерации и распространения ПД
происходит на мембране нейрона.
Клетки, которые способны генерировать и проводить
нервный импульс, имеют возбудимую мембрану.

Мембранный потенциал покоя нейрона

Если на нейрон не действует раздражитель, то он
находится в состоянии покоя.
В состоянии покоя внешняя сторона мембраны
нейрона заряжена положительно, а внутренняя –
отрицательно. Это состояние называется
мембранным потенциалом покоя.
Мембранный потенциал покоя (МПП) – это
разность потенциалов на мембране нейрона, которую
нейрон имеет в состоянии относительного
физиологического покоя.

Мембранный потенциал покоя нейрона

Потенциал действия – это кратковременное
изменение мембранного потенциала, при котором
внешняя сторона мембраны на одну тысячную
секунду становится отрицательной, а внутренняя –
положительной.

Мембранный потенциал покоя нейрона

1.
2.
3.
Чтобы понять, как нейрон передает информацию,
необходимо изучить:
каким образом в состоянии покоя на мембране
нейрона возникает и поддерживается мембранный
потенциал покоя;
каким образом мембранный потенциал
кратковременно изменяется во время генерации
нервного импульса;
каким образом нервный импульс распространяется
вдоль мембраны нейрона.

Мембранный потенциал покоя нейрона

Механизм возникновения МПП
Движение ионов
МПП возникает в результате движения ионов
(заряженных частиц) через ионные каналы
мембраны клетки.
Ионы – это атомы или молекулы, которые имеют
положительный (катионы) или отрицательный
(анионы) заряд.
Например, K+, Na+, Cl¯, Ca2+ и т.д.

Механизм возникновения МПП

Движение ионов через
ионные каналы связано с
действием двух факторов:
1. диффузия
2. электрическая сила
Диффузия – это движение
ионов из мест c высокой
концентрацией в места с
низкой концентрацией.

Механизм возникновения МПП

Термины
Градиент концентрации – это разность
концентрации ионов.
Сила концентрационного градиента – это сила
химической природы, которая перемещает ионы из
мест с высокой концентрацией в места с низкой
концентрацией данного иона.
Правило: чем больше градиент концентрации, тем
больше сила концентрационного градиента.

10. Механизм возникновения МПП

Электрическая сила (I) – это
сила, которая перемещает
ионы в электрическом поле.
Электрическая сила
перемещает отрицательные
ионы (анионы) к
положительному заряду
(аноду), а положительные ионы
(катионы) – к отрицательному
заряду (катоду).

11. Механизм возникновения МПП

Движение электрических зарядов в электрическом
поле называется электрическим током.
Сила электрического тока определяется двумя
факторами:
1. электрическим потенциалом
2. электрической проводимостью

12. Механизм возникновения МПП

Электрический потенциал (V) – это
сила, которая отражает различия в
заряде между катодом и анодом.
Чем больше различия в заряде, тем
больше электрический потенциал, тем
сильнее ток ионов.
Электрический потенциал измеряется
в Вольтах (V).
Электрическая проводимость – это
относительная способность
электрических зарядов двигаться в
электрическом поле.
Чем выше электрическая
проводимость, тем сильнее ток ионов.

13. Механизм возникновения МПП

Электрическое сопротивление (R) – сила,
препятствующая движению электрических зарядов.
Электрическое сопротивление измеряется в Омах
(Ω) .
Соотношение между электрическим потенциалом,
сопротивлением и силой тока описывается законом
Ома.
I = V/R
Сила тока равна нулю в двух случаях:
1. либо электрический потенциал равен нулю,
2. либо существует очень большое сопротивление.

14. Механизм возникновения МПП

Движение специфических ионов
через мембрану под действием
электрической силы может быть
только при одновременном
соблюдении двух условий:
1. мембрана содержит каналы, которые
проницаемы для данного вида ионов;
2. существует разность потенциалов по
обе стороны мембраны.

15. Ионный механизм мембранного потенциала покоя

Мембранный потенциал
(МП) – это разность
потенциалов на мембране
нейрона, которую нейрон
имеет в данный момент
времени (Vm).
Мембранный потенциал
нейрона может быть
измерен с помощью
микроэлектрода,
помещенного в цитоплазму
нейрона и подсоединенного
к вольтметру.

16. Ионный механизм мембранного потенциала покоя

В состоянии покоя внутренняя сторона мембраны
заряжена отрицательно, а внешняя сторона –
положительно.
Мембранный потенциал покоя (МПП) типичного
нейрона примерно равен - 65 mV.
Vm = -65 mV
Чтобы понять, каким образом возникает и
поддерживается МПП, необходимо рассмотреть
распределение некоторых ионов внутри нейрона и
окружающей его внешней среде.

17. Ионный механизм мембранного потенциала покоя

Равновесный потенциал
Рассмотрим гипотетическую клетку при
следующих условиях:
1. внутри клетки концентрация катионов K+ и
анионов А¯ выше, чем во внешней среде,
2. мембрана клетки не содержит ионных
каналов.
В этих условиях, несмотря на наличие
разности концентраций ионов,
1. не будет наблюдаться ток ионов через
мембрану;
2. мембранный потенциал будет равен
нулю.

18. Ионный механизм мембранного потенциала покоя

Ситуация изменится, если в мембране появятся
ионные каналы, проницаемые для ионов K+, но
не проницаемые для анионов А¯.
Ионы K+ по градиенту концентрации начнут
перемещаться из клетки во внеклеточную среду.
За счет отрицательных ионов А¯ на внутренней
стороне мембраны начинает скапливаться
отрицательный заряд, а на внешней стороне
мембраны начинает появляться положительный
заряд.
Таким образом, на мембране нейрона начинает
появляться разность потенциалов.

19. Ионный механизм мембранного потенциала покоя

По мере увеличения разности потенциалов
начинает возрастать электрическая сила,
которая толкает ионы K+ обратно в клетку (так
как положительно заряженные ионы K+
притягиваются к отрицательно зараженному
слою на внутренней стороне мембраны).
Когда на мембране достигается определенное
значение мембранного потенциала
электрическая сила, стремящаяся загнать
ионы K+ внутрь клетки, становится равной
химической силе градиента концентрации,
которая стремится вытолкнуть ионы K+ из
клетки.
Возникает состояние равновесия, при
котором сила электрической природы и сила
химической природы имеют одинаковое
значение, но направлены в разные стороны, а
движение ионов K+ приостанавливается.

20. Ионный механизм мембранного потенциала покоя

Ионный равновесный потенциал – это разность
потенциалов на мембране, при которой сила химической и
электрической природы уравновешивают друг друга по
отношению к данному иону.
Например, калиевый равновесный потенциал равен
примерно – 80 mV.
Вывод: появление мембранного потенциала в нейроне
происходит автоматически при соблюдении двух условий:
1. существует разница концентраций ионов между внешней и
внутренней средой нейрона;
2. существует избирательная проницаемость мембраны
нейрона для данного иона.

21. Ионный механизм мембранного потенциала покоя

22. Ионный механизм мембранного потенциала покоя

Разница концентраций различных ионов в
реальном нейроне
В реальном нейроне разные ионы по разному
распределены во внутриклеточной и внеклеточной
среде.
Ионы
Внеклеточная
концентрация
Внутриклеточная
концентрация
Отношение
Равновесный
потенциал
K+
5
100
1:20
-80 mV
Na+
150
15
10:1
62 mV
Ca2+
2
0,0002
10000:1
123 mV
Cl¯
150
13
11,5:1
-65 mV

23. Ионный механизм мембранного потенциала покоя

Каждый ион имеет свой собственный
равновесный потенциал.
Правило – концентрация ионов K+ больше
внутри клетки, а ионов Na+ и Cl¯ во
внешней среде.
Разница концентраций различных ионов
возникает в результате работы нескольких
ионных насосов, которые встроены в
мембрану нейрона.

24. Ионный механизм мембранного потенциала покоя

Два ионных насоса особенно важны
для понимания работы нейрона:
1. натрий-калиевый
2. кальциевый насос
Натрий-калиевый насос,
используя энергию АТФ, выкачивает
из клетки ионы Na+ и закачивает в
клетку ионы K+ против градиента
концентрации этих ионов.
За один цикл насос выкачивает
3
иона Na+ и 2 иона K+.
На работу этого насоса тратится
больше 70% всей АТФ,
находящейся в мозге.

25. Ионный механизм мембранного потенциала покоя

Кальциевый насос выкачивает из нейрона ионы Ca2+
против градиента его концентрации.
1.
2.
Кроме того существуют дополнительные механизмы,
которые обеспечивают уменьшение концентрации ионов
Ca2+ в цитоплазме нейрона (0,00002 mM):
внутриклеточные белки, которые связывают данные
ионы;
клеточные органеллы (в частности, митохондрии и
эндоплазматический ретикулум), которые депонируют
(изолируют) ионы Ca2+.

26. Ионный механизм мембранного потенциала покоя

Значение ионных насосов
Без ионных насосов в нейроне не смогла бы
поддерживаться разность концентрации
различных ионов, а, следовательно, в
нейроне не мог бы существовать
мембранный потенциал покоя, без которого, в
свою очередь, нейрон бы не смог отвечать на
внешнее воздействие и передавать
возбуждение.

27. Ионный механизм мембранного потенциала покоя

Относительная проницаемость мембраны для разных ионов
В реальном нейроне мембрана нейрона проницаема не для одного, а
для разных ионов.
Однако проницаемость мембраны для разных ионов разная.
Рассмотрим несколько сценариев для ионов Na+ и K+:
1. Если мембрана проницаема только для иона K+, то мембранный
потенциал будет равен калиевому равновесному потенциалу
(примерно -80 mV).
2. Если мембрана проницаема только для иона Na+, то мембранный
потенциал будет равен натриевому равновесному потенциалу
(примерно 62 mV).
3. Если мембрана имеет одинаковую проницаемость для ионов Na+ и K+, то
мембранный потенциал будет равен среднему значению между
натриевым и калиевым равновесным потенциалом (примерно - 9 mV).

28. Ионный механизм мембранного потенциала покоя

4. Если проницаемость мембраны в 40 раз больше для ионов K+, чем
для ионов Na+, то значение итогового мембранного потенциала
опять будет между натриевым и калиевым равновесным
потенциалом, но при этом ближе к калиевому равновесному
потенциалу.
Последний сценарий наиболее близок к ситуации в реальном
нейроне, в котором мембранный потенциал покоя равен -65 mV.
В реальном нейроне в состоянии покоя мембрана имеет высокую
проницаемость для ионов K+ и относительно низкую для ионов Na+.

29. Ионный механизм мембранного потенциала покоя

Вывод: высокая проницаемость мембраны
нейрона для ионов K+ является основным
источником мембранного потенциала
покоя (МПП), при этом относительная низкая
проницаемость мембраны для других ионов
(особенно ионов Na+) также вносит
определенный вклад в итоговое значение
МПП нейрона.

30. Ионный механизм мембранного потенциала покоя

Регуляция концентрации ионов K+ во внеклеточной
среде
Мембранный потенциал очень чувствителен к
изменению концентрации ионов K+ во внеклеточной
среде. Например, если концентрация ионов K+ во
внешней среде уменьшится в 10 раз, то мембранный
потенциал покоя изменится от -65 до -17 mV.
Чувствительность мембранного потенциала к
концентрации ионов K+ привела в эволюции к
появлению механизмов, которые тонко регулируют
содержание этих ионов во внеклеточной среде:
1. гематоэнцефалический барьер
2. глиальные клетки (астроциты)

31. Ионный механизм мембранного потенциала покоя

Гематоэнцефалический барьер (ГЭБ) – это
механизм, обеспечивающий ограниченный доступ
веществ, которые поступают через стенки капилляров,
к нейронам и глиальным клеткам внутри мозга.
Одна из функций ГЭБа – ограничение поступления из
крови ионов K+ во внеклеточную среду, окружающую
нейроны.

32. Ионный механизм мембранного потенциала покоя

Астроциты обеспечивают
регуляцию концентрации
ионов K+ с помощью
калиевых насосов и
калиевых ионных каналов,
встроенных в их мембрану.
Когда внеклеточная
концентрация ионов K+
возрастает, эти ионы начинают
заходить внутрь астроцитов
через калиевые ионные
каналы.

33. Ионный механизм мембранного потенциала покоя

Вход ионов K+ в цитоплазму
астроцита приводит к повышению
локальной внутриклеточной
концентрации этих ионов,
которые начинают
распространяться по системе
разветвленных отростков в
другие части глиальной клетки.
Таким образом, астроциты
обладают глиальным
буферным механизмом,
который поддерживает
концентрацию ионов K+ во
внеклеточной среде на
постоянном уровне.

34. Ионный механизм мембранного потенциала покоя

Заключение
Механизм возникновения МПП
1. Активность натрий-калиевого насоса обеспечивает и
поддерживает высокую концентрацию ионов K+ во
внутриклеточной среде нейрона.
2. Мембрана нейрона в состоянии покоя обладает высокой
проницаемостью для ионов K+, так как имеет многочисленные
калиевые каналы.
3. Движение ионов K+ через мембрану нейрона по градиенту их
концентрации приводит к появлению отрицательного заряда на
внутренней стороне мембраны и положительного заряда на
внешней стороне мембраны.
4. Разница потенциалов на мембране нейрона может
рассматриваться как заряд электрической батарейки, который
постоянно поддерживается за счет ионных насосов,
работающих на основе энергии АТФ.

Мембранный потенциал покоя (МПС) — это разность потенциалов между внешней и внутренней сторонами мембраны в условиях, когда клетка не возбуждено. Цитоплазма клетки заряжена отрицательно к внеклеточной жидкости неравномерным распределением анионов и катионов по обе стороны мембраны. Разность потенциалов (напряжение) для различных клеток имеет значение от -50 до -200 мВ (минус означает, что внутри клетка более негативно заряжена, чем снаружи). Мембранный потенциал покоя возникает на мембранах всех клеток — возбуждающих (нервов, мышц, секреторных клеток) и незбудливих.

МПС необходим для поддержания возбудимости таких клеток, как мышечные и нервовои. Также он влияет на транспорт всех заряженных частиц в любом типе клеток: он способствует пассивному транспорта анионов из клетки и катионов в клетку.

Образование и поддержания мембранного потенциала обеспечивают различные типы ионных насосов (в частности натрий-калиевый насос или натрий-калиевая АТФаза) и ионных каналов (калиевые, натриевые, хлорные ионные каналы).

Регистрация потенциала покоя

Для регистрации потенциала покоя используют специальную микроэлектродную технику. Микроэлектрод — это тоненькая стеклянная трубочка, с вытянутым концом, диаметром менее 1 мкм, заполненная раствором электролита (чаще хлорида калия). Рефернтним электродом служит серебряная хлорированная пластинка, расположенная в внеклеточном пространстве, оба электрода подключены к осциллографа. Сначала оба электрода занходяться в внеклеточном пространстве и разность потенциалов между ними отсутствует, если ввести регистрирующий микроэлектрод через мембрану в клетку, то осциллограф покажет скачкообразное смещение потенциала примерно до -80 мВ. Этот сдвиг потенциала называют мембранным потенциалом покоя.

Формирование потенциала покоя

К возникновению мембранного потенциала покоя приводят два фактора: во-первых, концентрации различных ионов отличаются внешне и всереднини клетки, во-вторых мембрана является полупроницаемой: одни ионы могут через нее проникать, другие — нет. Оба эти явления зависят от наличия в мембране специальных белков: концентрационные градиенты создают ионные насосы, а проницаемость мембраны для ионов обеспечивают ионные каналы. Важнейшую роль в формировании мембранного потенциала играют ионы калия, натрия и хлора. Концентрации этих ионов видризняюються по обе стороны мембраны. Для нейрона млекопитающих концентрация K + составляет 140 ммоль внутри клетки и только 5 мМ извне, градиент концентрации Na + почти противоположный — 150 ммоль снаружи и 15 мМ внутри. Такое распределение ионов поддерживается натрий-калиевым насосом в плазматической мембране — белком использующий энергию АТФ для закачки K + в клетку и скачивания Na + из нее. Также существует концентрационный градиент и для других ионов, например, хлорид аниона Cl -.

Концентрационные градиенты катионов калия и натрия — это химическая форма потенциальной энергии. В преобразовании энергии в электрическую участвуют ионные каналы — поры формируются скоплениями специальных трансмембранных белков. Когда ионы диффундируют через канал, они переносят единицу электрического заряда. Любой суммарный движение положительных или отрицательных ионов через мембрану будет создавать напряжение, или разность потенциалов по обе стороны мембраны.

Ионные каналы, участвующие в утовренни МПС имеют избирательную проницаемость, то есть дают возможность проникать только определенному типу ионов. В мембране нейрона в состоянии покоя открытые калиевые каналы (те, что в основном пропускают только калий), большинство натриевых каналов — закрыты. Диффузия ионов K + через калиевые каналы является решающим для создания мембранного потенциала. Так как концентрация K + значительно выше внутри клетки, химический градиент способствует оттоку этих катионов из клетки, поэтому в цитоплазме начинают преобладать анионы, которые не могут проходить через калиевые каналы.

Отток ионов калия из клетки ограничен самым мембранным потенциалом, поскольку при определенном его уровне накопление отрицательных зарядов в цитоплазме будет ограничивать движение катионов за пределы клетки. Таким образом, главным фактором в возникновении МПС является распределение ионов калия под действием электрического и химического потенциалов.

Равновесный потенциал

Для того, чтобы определить влияние движения определенного иона через полупроницаемую мембрану на формирование мембранного потенциала, строят модельные системы. Такая модельная система состоит из сосуда разделенной на две ячейки искусственной полупроницаемой мембраной, в которую встроены ионные каналы. В каждую ячейку можно погрузить электрод и померить разность потенциалов.

Рассмотрим случай, когда искусственная мембрана проницаема только для калия. По две стороны мембраны модельной системы создают градиент концентрации аналогичный таковому у нейроне: в ячейку, соответствующую цитоплазме (внутренняя ячейка), помещают 140 мМ раствор хлорида калия (KCl), в ячейку, соответствующую межклеточной жидкости (внешняя ячейка) — 5 ммоль раствор KCl. Ионы калия будут диффундировать через мембрану во внешнюю ячейку по градиенту концентрации. Но поскольку анионы Cl — проникать через мембрану не могут во внутренней ячейке возникать избыток отрицательного заряда, который будет препятствовать подали оттока катионов. Когда такие модельные нейроны достигнут состояния равновесия, действие химического и электрического потенциала будет сбалансирована, ни суммарной диффузии К + не будет наблюдаться. Значение мембранного потенциала, виинкае при таких условиях, называется равновесным потенциалом для определенного иона (Е ион). Равновесный потенциал для калия составляет примерно -90 мВ.

Аналогичный опыт можно провести и для натрия, установив между ячейками мембрану проникающей только для этого катиона, и поместив во внешнюю ячейку раствор хлорида натрия с концентрацией 150 мМ, а во внутреннюю — 15 мМ. Натрий будет двигаться во внутреннюю ячейку, ривоноважний потенциал для него составит примерно 62 мВ.

Количество ионов, должна диффундировать для генерации электрического потенциала очень невелика (примерно 10 -12 моль К + на 1 см 2 мембраны), этот факт имеет два важных последствия. Во-прешь, это означает, что концентрации ионов, которые могут проникать через мембрану, остаются стабильными снаружи и внутри клетки, даже после того как их движение обеспечил утоврення электрического потенциала. Во-вторых, мизерные потоки ионов через мембрану, потирбно для установления потенциала, не нарушают электронейтральности цитоплазмы и внеклеточной жидкости в целом, распределение зарядов происходит только в области, непосредственно прилегающей к плазматической мембраны.

Уравнение Нернста

Равновесный потенциал для определенного иона, например для калия, можно рассчитать по уравнению Нернста, что выглядит так:

,

где R — универсальная газовая постоянная, Т — абслоютна температура (по шкале Кельвина), z — заряд иона, F — число Фарадея, o, i — концентрация калия снаружи и внутри клетки соответственно. Поскольку описанные процессы происходят при температуре тела — 310 ° К, а десятичными логарифмами в исчислении пользоваться легче чем натуральными, это уравнение превращают следующим образом:

Подставляя концентрации К + в уравнение Нернста получаем равновесный потенциал для калия, составляет -90 мВ. Поскольку по нулевой потенциал принимается внешняя сторона мембраны, то знак минус означает, что в условиях равновесного калиевого потенциала внутренняя Сторн мембраны сравнительно более электроотрицательным. Аналогичные расчеты можно провести и для равновесного Натиева потенциала, он составляет 62 мВ.

Уравнения Голдмана

Хотя равновесный потенциал для ионов калия составляет -90 мВ, МПС нейрона несколько менее отрицательный. Эта разница отражает незначительное но постоянное следование ионов Na + через мембрану в состоянии покоя. Поскольку концентрационный градиент для натрия противоположный такого для калия, Na + движется внутрь клетки и сдвигает суммарный заряд на внутренней стороне мембраны в положительную сторону. На самом деле МПС нейрона составляет от -60 до -80 мВ. Это значение значительно ближе к Е K чем до Е Na, потому что в состоянии покоя в нейроне открыто много калиевых каналов и очень мало натриевых. Также на встанвлення МПС влияет движение ионов хлора. В 1943 году Дэвид Голдаман предложил усовершенствовать уравнение Нернста так, чтобы оно отражало влияние различных ионов на мембарнний потенциал, в этом уравнении учитывается относительная проницаемость мембраны для каждого типа ионов:

где R — универсальная газовая постоянная, Т — абслоютна температура (по шкале Кельвина), z — заряд иона, F — число Фарадея, [ион] o, [ион] i — концентрации ионов внутри и внутри клеток, Р — относительная проницаемость мембраны для соответствующего иона. Значение заряда в данном уравнении не сохраняется, но оно учтено — для хлора внешняя и внутренняя концентрация поменяны местами, так как его заряд 1.

Значение мембранного потенциала покоя для различных тканей

  • Разделенными мышцы -95 мВ;
  • Непосмугованих мышцы -50 мВ;
  • Астроглией от -80 до -90 мВ;
  • Нейроны -70 мВ.

Роль натрий-калиевого насоса в формировании МПС

Мембранный потенциал покоя может существовать только при условии неравномерного распределения ионов, обеспечивается функционированием натрий-калиевого насоса. Кроме того, этот белок делает также электрогенных властовости — он переносит 3 катионы натрия в обмен на 2 ионы калия, движущихся внутрь клетки. Таким образом, Na + -K + -АТФазы снижает МПС на 5-10 мВ. Подавление деятельности этого белка приводит к незначительному (на 5-10 мВ) мгновенного повышения мембранного потенциала, после чего он еще некоторое время будет существовать на достаточно стабильном уровне, пока будут сохраняться градиенты концентраций Na + и K +. Впоследствии эти градиенты начнут уменьшаться, вследствие проникнсоти мембраны к ионам, и через несколько десятков минут электрический потенциал на мембране исчезнет.