Технология тканевой инженерии. Тканевая инженерия: трансплантология будущего

После того, как была определена пригодность разлагаемого полимера для применения в костной тканевой хирургии, он должен был быть сформирован в пористый каркасный материал. Здесь необходимы два главных этапа. Во-первых, нужно разработать способ превращения полимера в объемный материал. Во-вторых, требуется способ сделать этот материал пористым.

Изготовление материала для тканевой инженерии

Правильный способ изготовления материала, или структурирования, частично зависит от химической природы полимера. Длинные, линейные, сатурированные полимеры, такие как PLGA, обыкновенно формируются в объемный материал переплетением отдельных полимерных цепей, чтобы образовать свободносвязанную полимерную сетку. Переплетение полимерной цепи часто достигается с помощью отливки полимера в форме. Таким образом, полимер расплавляется в растворителе, потом раствор заливается в форму или оболочку, впоследствии растворитель испаряется, оставляя полимер в виде объемного материала в форме оболочки. В качестве альтернативы, вливание полимера может осуществляться с помощью нагревания, давления или и того, и другого. Так, полимер помещается в форму, нагревается до своей температуры стеклования и с применением давления принимает форму оболочки. Преимущество этих способов в том, что они относительно просты. Однако, так как материал является упругим телом только из-за переплетенных полимерных цепей, в целом материалу недостает механической прочности. Этот недостаток трудно преодолеть без изменения химического строения полимера.

Еще один способ сформировать объемный материал из линейного полимера включает образование химических связей между полимерными цепями, известное как полимерное связывание. Связывание наиболее часто производится между ненасыщенными углерод-углеродными двойными связями, следовательно, эта составляющая, или другая, дающая аналогичную реакцию, должна существовать где-нибудь в полимерной цепи. Система инициации, обычно радикальная или ионная, также необходима для обеспечения связывания. Система инициации соединяется с полимером и, в ответ на импульс, такой как тепло, свет, химический ускоритель или просто время, инициатор образует продукт, распространяющий связывание. Так как эти полимеры сформированы в объемный материал с помощью ковалентного связывания, они обычно обладают значительной механической прочностью. Более того, их способность к затвердеванию в ответ на приложенный импульс позволяет вводить эти материалы в поврежденный участок, чтобы они затвердевали на месте. Важнейший недостаток связываемых материалов в том, что растущая сложность материала в условиях множества компонентов и наличия химической реакции часто ведет к проблемам с цитотоксичностью и биосовместимостью.

Также следует заметить, что отправная точка материала может не являться полимером, а может быть меньшей молекулой, такой как олигомер или мономер. С этими меньшими молекулами материал может формироваться с помощью инициации их полимеризации. Полимеризованные мономеры могут впоследствии сформировать объемный материал посредством переплетения длинных полимерных цепей в случае с бифункциональным мономером, или разветвления сеток в случае с мультифункциональными мономерами. Преимущества и недостатки, связанные с полимеризацией мономера, такие же, как с полимерным связыванием.

Методы, описанные выше, могут применяться как к гидрофобным, так и к гидрофильным полимерам. Основное преимущество гидрофобных полимеров, таких как PLA, над гидрофильными полимерами, такими как PEG, состоит в сравнительной прочности образуемого геля. Однако, гидрофобные полимеры в целом не могут использоваться для клеточной инкапсуляции, так как гель препятствует транспортировке воды, питательных веществ и отходов к клетке и из нее. Гели, образованные из гидрофобных полимеров, обычно используются в качестве каркаса, в котором клетки и ткани присоединяются к поверхности материала более чем внутри материала. Для применения в клеточной инкапсуляции особенно полезными являются гидрофильные полимеры (39, 46-51, 59-61). Эти полимеры образуют гель, который часто содержит до 90 % воды, что допускает значительную пассивную диффузию молекул в клетку и из нее. Высокое содержание воды, к сожалению, часто влечет за собой ухудшение механических свойств геля. В костной тканевой инженерии гидрогели могут использоваться в среде, не несущей нагрузок или в качестве компонента внутри каркаса, обладающего достаточно высокими механическими качествами. Выбор между гидрофильным и гидрофобным полимерами зависит, в основном, от рассматриваемой стратегии тканевой инженерии, а также от самих тканей.

Биомиметические материалы

Последние исследования сосредоточены на биомиметических материалах. Биомиметические материалы, созданные, чтобы более точно воспроизводить структуру внеклеточного матрикса, обычно являются гидрогелями, призванными особым образом взаимодействовать с определенным видом клеток таким образом, чтобы создать искусственную ткань, обладающую необходимыми свойствами. В целом, эти материалы впервые были получены путем создания материала, практически полностью предотвращающего клеточную адгезию. Далее, сигнальные молекулы, чаще всего короткие пептидные последовательности, полученные адгезией белков и участвующие в специфичной клеточной адгезии, ковалентно связываются с материалом. В результате получается материал, допускающий прикрепляться к его поверхности или проникать в его поры только особый вид клеток.

Очень важный фактор, который часто упускается из вида, это то, что первоначальный материал должен предотвращать случайную клеточную адгезию, чтобы окончательный материал обладал специфичной адгезией. Это часто достигается путем использования гидрогеля в качестве основного материала, так как считается, что гидрофильность гидрогелей предотвращает адсорбцию гидрофобных белков, необходимую для клеточной адгезии. Дополнительные факторы, определяющие успех этой стратегии, – объединение пептидной последовательности в наполнителе, более чем на поверхности материала, ограниченное расстояние, предоставленное пептидной последовательности, таким образом, становится возможно привязать ее к рецепторам поверхности клетки, и плотность пептидных последовательностей внутри материала. Наконец, дальнейшие исследования пептидных последовательностей, специфичных для адгезии отдельных клеточных популяций, необходимы для дальнейшего успеха этой методики.

Порообразование

После того, как была разработана методика превращения полимера в твердый материал, необходимо найти способ образования пористой структуры внутри материала. Самая простая методика – включение порогена в материал перед приготовлением, а после извлечь пороген. Объем, однажды заполненный порогеном, потом остается пустым, образуя поры внутри материала. Зная плотность материала и порогена, можно вычислить пористость, контролируя вес порогена относительно материала. Этот метод, известный как выщелачивание порогена, наиболее легко выполним с использованием порогена, растворимого в воде, такого как соль, сахар или крупицы желатина, который может быть извлечен замачиванием конструкции в воде. Принцип этого метода в том, что может быть собрано достаточное количество порогена, таким образом, отдельные поры соприкасаются друг с другом, образуя связанную пористую структуру внутри материала. Связанная пористость необходима не только для своевременного извлечения порогена, но и для создания каркаса для жизнеспособных тканей. Количество порогена, необходимое для соединяемости, зависит от материала и порогена, но обычно 70 % веса конструкции занимает пороген. Наконец, порогенный метод имеет то преимущество, что связанная пористость может быть достигнута простым измерением веса каркасной конструкции до и после извлечения порогена, если вес порогена, содержащегося в каркасной конструкции, равен весу, потерянному порогенным выщелачиванием, связанность достигнута.

Вторая основная методика формирования пористой структуры включает использование газа для образования пор внутри материала. Обычно газы, такие как азот или углекислый газ, вводят в состав объемного материала во время его приготовления, продувая материал газом или образуя газ как продукт химической реакции. Другой способ – образование пузырей замороженного растворителя, которые постепенно извлекаются испарением, чтобы получить пористую структуру материала. Опять же, основной принцип этого метода – объединение достаточного объема газа для формирования связанной пористой структуры.

В настоящее время разработаны более простые технологии создания каркасных структур с определенным строением. К настоящему моменту эти методы чаще всего используются для образования пористых каркасов, таких как описанный выше, для получения каркаса случайного строения. Это случайное пористое строение имеет два недостатка. Во-первых, оно сильно ухудшает механические свойства каркаса. Это ведет к необходимости создания материалов с очень высокими механическими качествами, чтобы полученный каркас мог использоваться в костной тканевой инженерии, а это ограничивает выбор применяемых материалов. Во-вторых, не менее важно то, что случайная пористость мешает серьезным исследованиям влияния каркасной структуры на образование тканей – проблема очень серьезная для костной тканевой инженерии. Ведущие методы создания каркасов с заданным строением включают в себя техники быстрого изготовления моделей, такие как трехмерное отпечатывание и стереолитография.

J.P. Fisher and A.H. Reddi, Functional Tissue Engineering of Bone: Signals and Scaffolds
Перевод Борисовой Марины

Определение Одно из направлений биотехнологии, занимающееся созданием биологических заместителей тканей и органов. Описание Создание биологических заместителей тканей (графта) включает несколько этапов: 1) отбор и культивирование собственного или донорского клеточного материала; 2) разработка специального носителя для клеток (матрицы) на основе биосовместимых материалов; 3) нанесение культуры клеток на матрицу и размножение клеток в биореакторе со специальными условиями культивирования; 4) непосредственное внедрение графта в область пораженного органа или предварительное размещение в области, хорошо снабжаемой кровью для дозревания и формирования микроциркуляции внутри графта (префабрикация). Клеточный материал может быть представлен клетками регенерируемой ткани или стволовыми клетками. Для создания матриц графтов применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген), а также биокомпозитные материалы. Например, эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани. Затем полученные остеобласты наносят на различные материалы, поддерживающие их деление, – донорскую кость, коллагеновые матрицы, пористый гидроксиапатит и др.. Живые эквиваленты кожи, содержащие донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти конструкции позволяют улучшить заживление обширных ожоговых поверхностей. Разработка графтов ведется также в кардиологии (искусственные клапаны сердца, реконструкция крупных сосудов и капиллярных сетей); для восстановления органов дыхания (гортань, трахея и бронхи), тонкого кишечника, печени, органов мочевыделительной системы, желез внутренней секреции и нейронов. Использование стволовых клеток находит широкое применение в области тканевой инженерии, но имеет ограничения как этического (эмбриональные стволовые клетки), так и генетического характера (в ряде случаев происходит злокачественное деление стволовых клеток). Исследования последних лет показали, что с помощью генно-инженерных манипуляций можно из фибробластов кожи получить так называемые плюрипотентные стволовые клетки (iPSc), аналогичные по своим свойствам и потенциалу эмбриональным стволовым. Наночастицы металлов в тканевой инженерии используются для возможности контролировать рост клеток, воздействуя на них магнитными полями разной направленности. Например, таким способом удалось создать не только аналоги структур печени, но и такие сложные структуры, как элементы сетчатки глаза. Также нанокомпозитные материалы обеспечивают наноразмерную шероховатость поверхности матриц для эффективного формирования костных имплантантов с помощью метода электронно-лучевой литографии (electron beam lithography, EBL). Создание искусственных тканей и органов позволит отказаться от трансплантации большей части донорских органов, улучшит качество жизни и выживаемость пациентов. Авторы

  • Народицкий Борис Савельевич, д.б.н.
  • Нестеренко Людмила Николаевна, к.б.н.
Ссылки
  1. Нанотехнологии в тканевой инженерии / Нанометр. - URL: http://www.nanometer.ru/2007/10/16/tkanevaa_inzheneria_4860.html (дата обращения 12.10.2009)
  2. Стволовая клетка / Википедия - свободная энциклопедия. URL: ttp://ru.wikipedia.org/wiki/Стволовые клетки (дата обращения 12.10.2009)
Иллюстрации
Теги Разделы Биомиметические наноматериалы
Формирование наноматериалов с использованием биологических систем и/или методов
Бионаноматериалы и биофункционализированные наноматериалы
Бионанотехнологии, биофункциональные наноматериалы и наноразмерные биомолекулярные устройства

Энциклопедический словарь нанотехнологий. - Роснано . 2010 .

Смотреть что такое "тканевая инженерия" в других словарях:

    тканевая инженерия - Методы управления клетками организма с целью формирования новых тканей или экспрессии биологически активных веществ Тематики биотехнологии EN tissue engineering … Справочник технического переводчика

    Термин биоинженерия Термин на английском bioengineering Синонимы биомедицинская инженерия Аббревиатуры Связанные термины биодеградируемые полимеры, биомедицинские микроэлектромеханические системы, биомиметика, биомиметические наноматериалы,… …

    Термин биомиметические наноматериалы Термин на английском biomimetic nanomaterials Синонимы биомиметики, biomimetics Аббревиатуры Связанные термины белки, биодеградируемые полимеры, биоинженерия, биомиметика, биосовместимость, биосовместимые… … Энциклопедический словарь нанотехнологий

    Вадим Сергеевич Репин Дата рождения: 31 июля 1936(1936 07 31) (76 лет) Место рождения: СССР Страна … Википедия

    - (лат. placenta, «лепёшка») эмбриональный орган у всех самок плацентарных млекопитающих, некоторых сумчатых, рыбы молот и других живородящих хрящевых рыб, а также живородящих онихофор и ряда других групп животных, позволяющий… … Википедия

    Содержит некоторые из самых выдающихся текущих событий, достижений и инноваций в различных областях современной технологии. Новые технологии это те технические нововведения, которые представляют прогрессивные изменения в рамках области… … Википедия

    Статьиамфифильныйбиодеградируемые полимерыбиологическая мембранабиологические моторыбиологические нанообъектыбиомиметикабиомиметические наноматериалыбиополимерыбиосенсорбиосовместимостьбиосовместимые покрытиябисл … Энциклопедический словарь нанотехнологий

    Статьи"двуликие" частицыактуаторбактериохлорофиллбиологические моторыбиологические нанообъектыбиомиметикабиомиметические наноматериалыбиосенсорбиосовместимостьбислойвекторы на основе наноматериаловводородная связь … Энциклопедический словарь нанотехнологий

    Статьи"мягкая" химиябиологическая мембранабиомиметикабиомиметические наноматериалыбиосенсорбиосовместимые покрытиябислойгенная инженериягибридные материалыДНКДНК микрочипдоставка геновкап … Энциклопедический словарь нанотехнологий

    Это служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не ус … Википедия

Книги

  • Тканевая инженерия , Творческий коллектив шоу «Дышите глубже». Принципиально новый подход – клеточная и тканевая инженерия – является последним достижением в области молекулярной и клеточной биологии. Этот подход открыл широкие перспективы для создания… аудиокнига

Тканевая инженерия – это наука о проектировании и изготовлении тканей, включая костную и другие скелетно-мышечные ткани. В основе как тканевой инженерии, так и морфогенеза, лежат три составляющие - морфогенетические сигналы, компетентные стволовые клетки и каркасные структуры. Восстановление скелетно-мышечных тканей обобщает и эмбриональное развитие, и морфогенез. Морфогенез – это развивающаяся группа наук, изучающих образование структур, общее строение организма на пути к взрослому функционированию.

Следовательно, импульсы, вовлеченные в морфогенез, необходимо использовать при инженерии костной ткани. Морфогенетические белки кости несут широконаправленную (плеотропную) функцию в первичном формировании структур, дифференцировке клеток и восстановлении кости и суставного хряща. Способность кости к её изменениям (рекреативная способность) зависит от морфогенетических белков кости в костном матриксе. Морфогенетические белки кости действуют через рецепторы и Smads 1, 5 и 8, стимулируя клеточные линии хряща и кости. Гомеостаз тканеинженерной кости и хряща зависит от поддержания внеклеточного матрикса и биомеханики. Использование морфогенетических белков кости в генной терапии и выделение стволовых клеток в биомиметических каркасных структурах внеклеточного матрикса ведет к функциональности костной ткани. В заключение необходимо отметить, что наше время – это время увлекательных открытий в области функциональной тканевой инженерии, костных импульсов, каркасных структур и стволовых клеток.

Одна из проблем, с которыми сталкивается хирург-ортопед – восстановление и реконструкция большого сегмента кости скелета, поврежденной в результате удаления злокачественной опухоли кости или травмы. Хотя аллогенный трансплантат для крупных сегментов кости завоевал все растущее одобрение, он имеет недостатки в виде возможных трещин. Проблема трещин кости у пациентов с постклимактерическим остеопорозом, метастазами, вызванными раком молочной железы или предстательной железы, и нарушением обмена веществ, таким как при диабете, требует применения к кости принципов тканевой инженерии.

Тканевая инженерия – это наука о проектировании и изготовлении новых тканей для функционального восстановления поврежденных органов и замещения частей организма, утраченных из-за рака, различных заболеваний и травм. Среди многих тканей организма кость имеет высокую способность к восстановлению, и поэтому является эталоном для принципов тканевой инженерии в целом. В ближайшее время накопление знаний в области тканевой инженерии приведет к созданию костных имплантов с заданными параметрами для применения в ортопедической хирургии.

Тремя основными составляющими тканевой инженерии и тканевой регенерации являются сигналы, стволовые клетки и каркасные структуры. Специфичность сигналов зависит от морфогенеза тканей и индуктивных раздражителей в развивающемся эмбрионе. Они в целом воспроизводятся во время регенерации. Костные трансплантаты используются хирургами уже более ста лет. Urist сделал важнейшее открытие показав, что имплантация деминерализованных, лиофильно высушенных сегментов аллогенной кости кролика вызывала формирование новой кости. Показано, что стимулирование костеобразования является последовательным, поэтапным действием, где три ключевых этапа – хемотаксис, митоз и дифференциация имеют место. Хемотаксис – это направленное перемещение клеток под влиянием химических сигналов, высвобождаемых из деминерализованного костного матрикса. Передвижение и последующая адгезия костно-образующих клеток на коллагеновом матриксе определяется наличием в нем фибронектина.

Пик распространения клеток под действием стимуляторов роста, высвобожденных из нерастворимого деминерализованного матрикса, наблюдается на третий день. Формирование хряща достигает своего максимума на 7-8 день, за ним следует инвазия сосудов и, начиная с 9 дня, наблюдается остеогенез. Формирование кости достигает максимума на 10-12 день, на что указывает активность щелочная фосфатазы. Затем следует увеличение объема остеокальцина, костной γ-карбоксиглутаминовой кислоты, содержащей белок (BGP). Новообразованная незрелая кость заполняется красным костным мозгом к 21 дню. Деминерализованная кость за счет выделения костных морфогенетических белков, определяющих первоначальные импульсы к морфогенезу костной ткани, а также формированию множества органов помимо кости, таких как мозг, сердце, почки, легкие, кожа и зубы. Следовательно, можно относиться к морфогенетическим белками кости как к морфогенетическим белкам организма.

J.P. Fisher and A.H. Reddi, Functional Tissue Engineering of Bone: Signals and Scaffolds
Перевод Борисовой Марины

Развитие современной клеточной трансплантологии и ее внедрение в клинику в последние десятилетия позволило продлить жизнь многим тысячам пациентов. В настоящее время наука о трансплантации клеток остается одной из самых интенсивно развивающихся областей биологии и медицины. Уже проходят клинические испытания такие методы, как:

– трансплантация собственных гемопоэтических клеток при рассеянном склерозе, системной красной волчанке, ревматоидном артрите;
– трансплантация гемопоэтических клеток при лечении злокачественных опухолей почек, молочной и поджелудочной желез, головного мозга;
– трансплантация донорских стволовых клеток для профилактики реакции «трансплантат против хозяина» после предшествующей трансплантации гемопоэтических клеток;
– адаптивная иммунотерапия (цитотоксические Т-лимфоциты) в онкологии, клеточные онковакцины;
– трансплантация миобластов скелетной мышечной ткани;
– трансплантация нейрональных клеток пациентам с постинсультным синдромом;
– трансплантация собственных и донорских клеток костного мозга для улучшения регенерации костной ткани после переломов.

Успехи в области изучения стволовых клеток во многом обусловлены повышенным интересом ученых и клиницистов к перспективам их использования в лечении заболеваний, в настоящее время считающихся неизлечимыми. Однако при этом возникает много этических вопросов (таких, например, как использование в качестве трансплантационного материала клеток эмбрионов человека), а также вопросов, связанных с правовой регуляцией клеточных технологий. В развитии клеточных технологий наиболее перспективными считаются следующие направления:

– выделение и трансплантация стволовых клеток, в том числе собственных клеток пациента;
– выявление субпопуляций и клонов стволовых клеток;
– тестирование безопасности трансплантации (инфекционной, онкогенной, мутагенной), составление «клеточного паспорта»;
– выделение индивидуальных линий эмбриональных стволовых клеток методом переноса ядра соматической клетки;
– коррекция генетических дефектов пренатальной трансплантацией клеток или комбинацией методов переноса ядра и генетической терапии.

Тканевая инженерия

Одним из направлений биотехнологии, которое занимается созданием биологических заместителей тканей и органов, является тканевая инженерия (ТИ).

Современная тканевая инженерия начала оформляться в самостоятельную дисциплину после работ Д.Р. Уолтера и Ф.Р. Мейера (1984), которым удалось восстановить поврежденную роговицу глаза с помощью пластического материала, искусственно выращенного из клеток, взятых у пациента. Этот метод получил название кератинопластика . После симпозиума, организованного Национальным научным фондом США (NSF) в 1987 г., тканевая инженерия стала считаться новым научным направлением в медицине. К настоящему времени большинство работ в этой области выполнено на лабораторных животных, но часть технологий уже используется в медицине.

Создания искусственных органов состоит из нескольких этапов (рис. 2).

Рис. 2. Схема процессинга тканеинженерных конструкций

На первом этапе отбирают собственный или донорский клеточный материал (биопсия), выделяют тканеспецифичные клетки и культивируют их. В состав тканеинженерной конструкции, или графта, кроме культуры клеток входит специальный носитель (матрица). Матрицы могут быть выполнены из различных биосовместимых материалов. Клетки полученной культуры наносятся на матрицу, после чего такая трехмерная структура переносится в биореактор1 с питательной средой, где инкубируется в течение определенного времени. Первые биореакторы были созданы для получения искусственной печеночной ткани.

Для каждого типа выращиваемого графта подбирают специальные условия культивирования. Например, для создания искусственных артерий используют проточный биореактор, в котором поддерживается постоянный проток питательной среды с переменным пульсовым давлением, имитирующим пульсацию тока крови.

Иногда при создании графта используют технологию префабрикации: конструкцию вначале помещают не на постоянное место, а в область, хорошо снабжаемую кровью, для дозревания и формирования микроциркуляции внутри графта.

В качестве клеточного материала для создания искусственных органов применяют культуры клеток, входящих в состав регенерируемой ткани или являющихся их предшественниками. Так, например, при получении графта для реконструкции фаланги пальца были использованы приемы, вызывающие направленную дифференцировку стволовых клеток костного мозга в клетки костной ткани.

Если для создания графта применялся собственный клеточный материала пациента, то происходит практически полная интеграция графта со скорейшим восстановлением функции регенерируемого органа. В случае использования графта с донорскими клетками в организме включаются механизмы индукции и стимуляции собственной репаративной активности, и за 1–3 месяца собственные клетки полностью замещают разрушающиеся клетки графта.

Биоматериалы, используемые для получения матриц, должны быть биологически инертными и после графтинга (перенесения в организм) обеспечивать локализацию нанесенного на них клеточного материала в определенном месте. Большинство биоматериалов тканевой инженерии легко разрушаются (резорбируются) в организме и замещаются его собственными тканями. При этом не должны образовываться промежуточные продукты, обладающие токсичностью, изменяющие рН ткани или ухудшающие рост и дифференцировку клеточной культуры. Нерезорбируемые материалы почти не применяются, т.к. они ограничивают регенерационную активность, вызывают избыточное образование соединительной ткани, провоцируют реакцию на инородное тело (инкапсуляцию).

Для создания тканей и органов применяются в основном синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген), а также биокомпозитные материалы (табл. 3).

Таблица 3. Классы биоматериалов, применяемых в тканевой инженерии.

Биоматериал

Биосовмести-
мость (включая
цитотоксичность)

Токсичность

Резорбция

Область применения

Синтетические: Полимеры на основе органических кислот

Гидроксиапатит

Полная до СО 2 и Н 2 О

Нерезорбируемый

Хирургия, в тканевой инженерии как матрица-носитель практически для всех культур клеток. Костная ткань

Природные:

Альгинат

Перевязочные материалы, в тканевой инженерии в виде гидрогелей (хондробласты, нервные клетки)

Перевязочные материалы, в ТИ в виде пленок, губок; в сочетании с коллагеном (реконструкция костной, мышечной, хрящевой тканей, сухожилий)

Коллаген

Замещение собственными белками, ферментативный лизис

Перевязочные материалы, в ТИ (губки, трехмерные модели, пленки) как матрица-носитель практически для всех культур клеток.

Внеклеточный матрикс (естественные биологические мембраны)

++++
(за счет включенных в структуры биологически активных веществ и факторов роста)

Ремоделирование с заменой собственными белками

Шовный материал, в ТИ (трехмерные модели, пленки) как матрица-носитель для практически всех культур клеток

Одними из первых в тканевой инженерии стали применяться биодеградируемые синтетические биоматериалы на основе полимеров органических кислот, например молочной (PLA, полилактат) и гликолевой (PGA, полигликолид). При этом в состав полимера может входить как один тип кислотного остатка, так и их сочетания в различных пропорциях. Матрицы на основе органических кислот легли в основу создания таких органов и тканей, как кожа, кость, хрящ, сухожилие, мышцы (поперечно-полосатая, гладкая и сердечная), тонкая кишка и др. Однако у этих материалов имеются недостатки: изменение рН окружающих тканей при расщеплении в организме и недостаточная механическая прочность, что не позволяет использовать их как универсальный материал для матриц и подложек.

Особое место среди материалов для биоматриц-носителей занимают коллаген, хитозан и альгинат.

Коллаген практически не имеет антигенных свойств. Использованный в качестве матрицы, он разрушается за счет ферментативного гидролиза и структурно замещается собственными белками, синтезируемыми фибробластами. Из коллагена могут быть изготовлены матрицы с заданными свойствами для реконструкции практически любых органов и тканей. Являясь естественным тканевым (межклеточным) белком, он оптимально подходит в качестве носителя культуры клеток, обеспечивая рост и развитие ткани.

Альгинат – полисахарид из морских водорослей, может быть использован в качестве матрицы-носителя, однако не обладает достаточной биологической совместимостью и оптимальными механическими свойствами. Обычно он используется в виде гидрогелей для восстановления хрящевой и нервной ткани.

Хитозан – азотсодержащий полисахарид, который является основной составляющей наружного покрова насекомых, ракообразных и паукообразных. Этот биоматериал получают из хитиновых панцирей ракообразных и моллюсков. В настоящее время заслуживает внимания комбинированный по составу препарат – коллагеново-хитозановый комплекс. В ходе лабораторных и клинических исследований была показана его инертность и способность сохранять жизнеспособность клеточной культуры как in vitro , так и in vivo . Этот комплекс разрешен Минздравом РФ в качестве перевязочного, ранозаживляющего средства и уже используется в клинической практике в хирургии и стоматологии.

Современные возможности тканевой инженерии

Большинство исследований в области тканевой инженерии направлены на получение того или иного эквивалента тканей. Самое изученное направление тканевой инженерии – реконструкция соединительной ткани, особенно костной. В первой работе в этой области была описана реконструкция костно-хрящевого фрагмента бедренной кости кролика. Основной проблемой, с которой столкнулись исследователи, был выбор биоматериала и взаимодействие костной и хрящевой тканей в графте. Эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани. Затем полученные остеобласты наносят на различные материалы, поддерживающие их деление, – донорскую кость, PGA, коллагеновые матрицы, пористый гидроксиапатит и др. Графт сразу помещают в место дефекта или предварительно выдерживают в мягких тканях. Основной проблемой таких конструкций исследователи считают несоответствие скорости образования кровеносных сосудов в новой ткани и сроков жизни клеток в глубине графта. Для решения этой проблемы графт размещают около крупных сосудов.

Гистогенез мышечных тканей в большой степени зависит от развития нервно-мышечных взаимодействий. Отсутствие адекватной иннервации конструкций мышечных тканей пока не позволяет создать функционирующие тканевые эквиваленты поперечно-полосатой мышечной ткани. Гладкая мускулатура менее чувствительна к денервации, т.к. имеет некоторую способность к автоматизму. Гладкомышечные тканевые конструкции используют при создании таких органов, как мочеточник, мочевой пузырь, кишечная трубка. В последнее время все большее внимание уделяется попыткам реконструкции сердечной мышцы с помощью графтов, содержащих сердечные миоциты, полученные путем направленной дифференцировки малодифференцированных клеток костного мозга.

Одним из самых важных направлений в тканевой инженерии является изготовление эквивалентов кожи. Живые эквиваленты кожи, содержащие донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти конструкции позволяют улучшить заживление обширных ожоговых поверхностей.

Основными точками приложения тканевой инженерии в кардиологии можно считать создание искусственных клапанов сердца, реконструкцию крупных сосудов и капиллярных сетей. Имплантаты из синтетических материалов недолговечны и часто приводят к образованию тромбов. При использовании трубчатых (сосудистых) графтов на биодеградируемых матрицах получены положительные результаты в экспериментах на животных, однако нерешенной проблемой остается контролируемая прочность и сила сопротивления стенок графта пульсовому давлению крови.

Создание искусственных капиллярных сетей актуально при лечении патологий микроциркуляции крови при таких заболеваниях, как облитерирующий эндартериит, сахарный диабет и др. Положительные результаты здесь получены при использовании биодеградируемых графтов, выполненных в виде сосудистой сети.

Восстановление органов дыхания, таких как гортань, трахея и бронхи, также возможно с помощью тканевых конструкций из биодеградируемых или композитных материалов с нанесенными на них эпителиальными клетками и хондробластами.

Заболевания и пороки развития тонкого кишечника, сопровождающиеся его значительным укорочением, приводят к тому, что пациенты вынуждены пожизненно получать специальные питательные смеси и парентеральные растворы. В таких случаях удлинение функциональной части тонкого кишечника – единственная возможность облегчить их состояние. Алгоритм изготовления графта сводится к следующему: на биодеградируемую мембрану наносятся клетки эпителиального и мезенхимального происхождения и помещаются в сальник или брыжейку кишки для созревания. Спустя определенное время собственную кишку соединяют с графтом. Эксперименты на животных показали улучшение всасывающей активности, однако из-за отсутствия иннервации искусственная кишка не обладает способностью к перистальтике и регуляции секреторной активности.

Основная сложность в тканевой инженерии печени заключается в формировании трехмерной структуры ткани. Оптимальной биоматрицей для клеточной культуры является внеклеточный матрикс печени. Исследователи полагают, что к успеху приведет применение пористых биополимеров с заданными свойствами. Предпринимаются попытки применения постоянного магнитного поля для трехмерной организации клеточной культуры. Остаются нерешенными проблемы кровоснабжения больших по размерам графтов и отвода желчи, поскольку в графтах отсутствуют желчные протоки. Однако существующие методики уже позволяют компенсировать некоторых генетические аномалии печеночных ферментных систем, а также ослабить проявления гемофилии у лабораторных животных.

Конструирование желез внутренней секреции находится на стадии экспериментальной проверки методик на лабораторных животных. Наибольшие успехи достигнуты в тканевой инженерии слюнных желез, получены конструкции, содержащие клетки поджелудочной железы.

Пороки развития мочевыделительной системы составляют до 25% всех пороков развития. Тканевая инженерия в этом направлении медицины очень востребована. Создание эквивалентов почечной ткани – достаточно сложная задача, и решить эту проблему пытаются с помощью технологий прямого органогенеза, используя эмбриональные закладки почечной ткани. На лабораторных животных была показана возможность восстановления различных органов и тканей мочевыделительной системы.

Одной из важнейших задач является восстановление органов и тканей нервной системы. Тканеинженерные конструкции могут быть использованы для восстановления как центральной, так и периферической нервной системы. В качестве клеточного материала для репарации спинного мозга могут быть использованы клетки обонятельных луковиц и трехмерные биодеградируемые гели. Для периферической нервной системы используют биодеградируемые трубчатые графты, внутри которых рост аксона осуществляется по шванновским клеткам.

Создание искусственных органов позволит отказаться от трансплантации большей части донорских органов, улучшит качество жизни и выживаемость пациентов. В ближайшее время эти технологии будут внедряться во все области медицины.

По материалам журнала «Клеточная трансплантология и тканевая инженерия», 2005, № 1


1. Введение

1.1 Предварительные сведения

1.2 Добыча клеток

2. Строительные леса

2.1 Материалы для строительных лесов

2.2 Углеродные нанотрубки

2.2.1 История открытия

2.2.2 Структура нанотрубки

2.2.3 Одностенные нанотрубки

2.2.4 Многостенные нанотрубки

2.2.5 Получение углеродных нанотрубок

3. Список литературы

1. Введение

Тканевая инженерия когда-то классифицировалась как подраздел биологических материалов, но, увеличившись по своим масштабам и важности ее можно рассматривать как раздел в своем собственном праве.

Ткани требуют определенных механических и структурных свойств для правильного функционирования. Термин «тканевая инженерия» также относится к коррекции выполнения конкретных биохимических функций с использованием клеток в искусственно созданной системе поддержки (например, искусственная поджелудочная железа, или искусственная печень). Термин «регенеративная медицина» часто используется как синоним тканевой инженерии, хотя в регенеративной медицине уделяется больше внимания использованию стволовых клеток для производства тканей.

клетка нанотрубка тканевый инженерия

1.1 Предварительные сведения

Обычно тканевая инженерия, как заявил Лангер и Ваканти, рассматривается как «междисциплинарная область, в которой применяются принципы инженерии и биологии для разработки биологических заменителей, что есть восстановление, сохранение или улучшение функции тканей или целого органа». Тканевая инженерия также была определена как «понимание принципов роста тканей, и их применение для производства функциональных заменителей тканей для клинического использования». В более подробном описании говорится, что «основное предположение о тканевой инженерии является то, что использование природных биологических систем позволит достичь большего успеха в разработке терапевтических методов, направленных на замену, ремонт, обслуживание, и/или расширение функции ткани».

1.2 Добыча клеток

Клетки могут быть получены из жидких тканей, такие как кровь, множеством способов, как правило, это центрифугирование?. Из твердых тканей клетки добывать труднее. Обычно ткань превращают в фарш, а затем переваривают с ферментами трипсина или коллагеназа для удаления внеклеточного матрикса, который содержит клетки. После этого клетки пускают в свободное плавание, и извлекают их как из жидких тканей. Скорость реакции с трипсином очень сильно зависит от температуры, а большие температуры наносят большой ущерб клеткам. Для коллагеназа нужны небольшие температуры, и, следовательно, здесь меньше потерь клеток, но реакция при этом занимает больше времени, а сам коллагеназ является дорогим реагентом.

2. Строительные леса

Клетки часто имплантируют в искусственные структуры, способные поддержать образование трехмерной ткани. Эти структуры называют строительными лесами.

2.1 Материалы для строительных лесов

Для достижения цели реконструкции ткани, строительные леса должны отвечать некоторым специфическим требованиям. Высокой пористостью и определенным размером пор, которые необходимы для содействия посева клеток и диффузии по всей структуре, как клеток, так и питательных веществ. Способность к биологическому разложению является часто существенным фактором, так как леса поглощаются окружающими тканями без необходимости хирургического удаления. Скорость, с которой происходит разложение, должна как можно больше совпадать со скоростью формирования тканей: это означает, что в то время, как изготовленные клетки создадут свою собственную природную матричную структуру вокруг себя, они уже в состоянии обеспечить структурную целостность в теле, и в конечном итоге строительные леса будут сломаны, оставив вновь образованную ткань, которая возьмет на себя механическую нагрузку.

Было исследовано множество материалов для строительных лесов (натуральных и синтетических, биоразлагаемых и постоянных). Большинство из этих материалов были известны в области медицины еще до появления в тканевой инженерии в качестве темы исследования, и уже использовались, например, в хирургии для наложения швов.

Чтобы разработать строительные леса с идеальными свойствами (биосовместимость, не иммуногенность, прозрачность, и т.д.), для них были спроектированы новые материалы.

Леса также могут быть построены из натуральных материалов: в частности, были изучены различные производные от внеклеточного матрикса и их способность поддерживать рост клеток. Белковые материалы, такие, как коллаген или фибрин, и полисахариды, такие, как хитозан или гликозаминогликан (ГАГ), подходящие с точки зрения совместимости, но некоторые вопросы все еще остаются открытыми. Функциональные группы лесов могут быть полезны в доставке малых молекул (лекарств) для конкретных тканей.

2.2 Углеродные нанотрубки

Углеродные нанотрубки -- это протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свернутых в трубку гексагональных графитовых плоскостей и заканчивающиеся обычно полусферической головкой, которая может рассматриваться как половина молекулы фуллерена.

2.2.1 История открытия

Как известно, фуллерен (C 60) был открыт группой Смолли, Крото и Кёрла в 1985 г., за что в 1996 г. эти исследователи были удостоены Нобелевской премии по химии. Что касается углеродных нанотрубок, то здесь нельзя назвать точную дату их открытия. Хотя общеизвестным является факт наблюдения структуры многостенных нанотрубок Ииджимой в 1991 г. Существуют более ранние свидетельства открытия углеродных нанотрубок. Так, например в 1974 -- 1975 гг. Эндо и др. опубликовали ряд работ с описанием тонких трубок с диаметром менее 100 нм, приготовленных методом конденсации из паров, однако более детального исследования структуры не было проведено. Группа ученых Института катализа СО АН СССР в 1977 году при изучении зауглероживания железохромовых катализаторов дегидрирования под микроскопом зарегистрировали образование "пустотелых углеродных дендритов", при этом был предложен механизм образования и описано строение стенок. В 1992 в Nature была опубликована статья, в которой утверждалось, что нанотрубки наблюдали в 1953 г. Годом ранее, в 1952, в статье советских учёных Радушкевича и Лукьяновича сообщалось об электронно-микроскопическом наблюдении волокон с диаметром порядка 100 нм, полученных при термическом разложении окиси углерода на железном катализаторе. Эти исследования также не были продолжены.

Существует множество теоретических работ по предсказанию данной аллотропной формы углерода. В работе химик Джонс (Дедалус) размышлял о свёрнутых трубах графита. В работе Л. А. Чернозатонского и другой, вышедшую в тот же год, что и работа Ииджимы, были получены и описаны углеродные нанотрубы, а М. Ю. Корнилов не только предсказал существование одностенных углеродных нанотруб в 1986 г, но и высказал предположение об их большой упругости.

2.2.2 Структура нанотрубки

Размещено на http://www.сайт/

Идеальная нанотрубка представляет собой свёрнутую в цилиндр графитовую плоскость, то есть поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графитовой плоскости относительно оси нанотрубки. Угол ориентации, в с

Свою очередь, задаёт хиральность нанотрубки, которая определяет, в частности, её электрические характеристики.

Упорядоченная пара (n, m), указывающих координаты шестиугольника, который в результате сворачивания плоскости должен совпадать с шестиугольником, находящимся в начале координат называется хиральностью нанотрубки и обозначается.

Другой способ обозначения хиральности состоит в указании угла б между направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Однако в этом случае для полного описания геометрии нанотрубки необходимо указать её диаметр. Индексы хиральности однослойной нанотрубки (m, n) однозначным образом определяют её диаметр D. Указанная связь имеет следующий вид:

где d 0 = 0,142 нм -- расстояние между соседними атомами углерода в графитовой плоскости.

Связь между индексами хиральности (m, n) и углом б даётся соотношением

Среди различных возможных направлений сворачивания нанотрубок выделяются те, для которых совмещение шестиугольника (n, m) с началом координат не требует искажения его структуры. Этим направлениям соответствуют, в частности, углы б = 0 (armchair конфигурация) и б = 30° (zigzag конфигурация). Указанные конфигурации отвечают хиральностям (n, 0) и (2m, m) соответственно.

2.2.3 Одностенные нанотрубки

Структура одностенных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой.

2.2.4 Многостенные нанотрубки

Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.

Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита.

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера.

2.2.5 Получение углеродных нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ) первым идентифицировал эти структуры, как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм. Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группа. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. При этом существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучем лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени.

Т.о. группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, "значительно упростив" технологию их синтеза. Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом - методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из варианов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур. Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла.

При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное "выделение" избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава, увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С представляющую собой цилиндрический каркас-нанотрубку. Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа "бамбук" или вложенные наноконусы. Полученные материалы только состоят из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.

3. Список литературы

Лангер, Ваканти JP (май 1993). "Тканевая инженерия". Наука 260 (5110): 920 6. DOI: 10.1126/science.8493529. PMID 8493529.

Б Макартур BD, Oreffo RO (январь 2005 г.). "Преодоление разрыва". Природа 433 (7021): 19. DOI: 10.1038/433019a. PMID 15635390.

Подобные документы

    Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.

    реферат , добавлен 11.01.2013

    Клеточная инженерия как совокупность методов, используемых для конструирования новых клеток, история ее развития. Методы выделения протопластов. Описание способов культивирования протопластов: метод жидких капель и платирования. Соматическая гибридизация.

    презентация , добавлен 28.02.2014

    Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация , добавлен 21.02.2014

    Искусственный фотосинтез как новый источник энергии. Искусственный фотосинтез в суперкомпьютере. Улучшение фотосинтеза нанотехнологиями. Обеспечение сверхурожая с помощью ускорения процесса фотосинтеза. Внедрение углеродных нанотрубок в хлоропласты.

    презентация , добавлен 11.11.2014

    Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.

    презентация , добавлен 17.12.2013

    Промышленное использование биологических процессов на основе микроорганизмов, культуры клеток, тканей и их частей. История возникновения и этапы становления биотехнологии. Основные направления, задачи и методы: клонирование, генная и клеточная инженерия.

    презентация , добавлен 22.10.2016

    Возникновение молекулярной биотехнологии. История проблемы биологического кода. Политика в области генной терапии соматических клеток. Накопление дефектных генов в будущих поколениях. Генная терапия клеток зародышевой линии. Генетика и проблема человека.

    реферат , добавлен 25.09.2014

    Методы культивирования соматических клеток человека и животных на искусственных питательных средах как предпосылка к развитию клеточной инженерии. Этапы соматической гибридизации. Перенос генетического материала. Происхождение трансгенных растений.

    реферат , добавлен 23.01.2010

    Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.

    презентация , добавлен 04.12.2013

    Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.