Физико химические свойства жиров. Физические и химические свойства жиров

Свойства жиров определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием свободных, не связанных с глицерином, жирных кислот, соотношением различных триглицеридов и т.п.

Насыщенные жирные кислоты образуют триглицериды, имеющие при обычной температуре твердую консистенцию. Среди них встречаются как животные (например, говяжий жир), так и растительные (например, масло какао) жиры. Ненасыщенные жирные кислоты образуют триглицериды, имеющие при тех же условиях жидкую консистенцию - животные жиры (например, рыбий жир) и подавляющее большинство растительных масел.

Жиры и масла жирны на ощупь, нанесенные на бумагу, оставляют характерное "жирное" пятно, не исчезающее при нагревании, а, наоборот, еще сильнее расплывающееся. При обыкновенной температуре масла не загораются, но нагретые или в виде паров горят ярким пламенем. Чистые триглицериды бесцветны, но природные жиры более или менее окрашены. Масла обычно желтоватые вследствие присутствия каротиноидов, некоторые из них могут быть окрашены хлорофиллом в зеленый цвет, или, что еще реже, в красно-оранжевый или иной цвет в зависимости от вида липохромов. Запах и вкус свежих жиров специфичны. Запах обусловлен присутствием следов эфирных масел (терпены, алифатические углеводороды и др.). В некоторых жирах содержатся обладающие запахом сложные эфиры низкомолекулярных кислот. Специфический запах рыбьих жиров обусловлен сильно ненасыщенными жирными кислотами или, вернее, продуктами их окисления.

Плотность подавляющего числа жиров находится в пределах 0,910-0,945. Лишь у немногих масел (например, касторового) плотность выше - до 0,970 (при 20°С, по ГФ X).

В воде жиры и масла нерастворимы, но их можно заэмульгировать в воде с помощью поверхностно-активных веществ. В этаноле растворяются трудно (или не растворяются), за исключением касторового масла. Легко растворимы в диэтиловом эфире, хлороформе, сероуглероде, бензине, петролейном эфире, вазелиновом масле. Жиры и масла смешиваются между собой в любых соотношениях. Они являются хорошими растворителями эфирных масел, камфоры, смол, серы, фосфора и ряда других веществ.

Температура плавления твердых жиров возрастает с числом углеродных атомов, входящих в их состав жирных кислот. Поскольку жиры представляют сложные смеси разных триглицеридов, точка плавления их обычно не бывает четко выраженной. Сказанное в равной степени относится и к температуре застывания.

Температура кипения жиров не может быть определена, поскольку при нагревании до 250°С они разрушаются с образованием из глицерина сильно раздражающего слизистые оболочки глаз альдегида акролеина.


Кипят они в высоком вакууме. Жирные масла, состоящие из простых триглицеридов, оптически неактивны, если они не содержат примеси оптически активных веществ. В случае смешанных триглицеридов некоторые жирные масла могут проявлять оптическую активность.

Показатель преломления тем выше, чем больше содержится в жире триглицеридов ненасыщенных кислот. Например, масло какао имеет показетель преломления 1,457, миндальное - 1,470, льняное - 1,482.

Химические свойства жиров проявляются в их способности к омылению, прогорканию, высыханию и гидрогенизации.

Омыление. Триглицериды жирных кислот способны к превращениям, характерным для сложных эфиров. Под влиянием едких щелочей происходит расщепление эфирных связей, в результате чего образуются свободный глицерин и щелочные соли жирных кислот (мыла).

Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности. С этой целью определяют число омыления , то есть количество миллиграммов едкого калия (KOH), необходимое для нейтрализации свободных и связанных в виде триглицеридов жирных кислот, содержащихся в 1 г жира.

Прогоркание. Этот сложный химический процесс происходит при хранении жира в неблагоприятных условиях (доступ воздуха и влаги, свет, тепло), в результате чего жиры приобретают горьковатый вкус и неприятный запах. Если жиры в этих условиях подвергаются действию фермента липазы, то происходит их разложение, аналогичное реакции омыления. Этот вид порчи жира легко контролируется по величине кислотного числа (КЧ). Под этой константой понимается количество милиграммов едкого калия (KOH), которое необходимо для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Доброкачественные жиры содержат небольшое количество свободных жирных кислот.

С помощью других констант можно определить природу содержащихся в масле свободных жирных кислот. Так, по числу Рейхерта-Мейсля можно судить о количестве летучих растворимых в воде кислот, а по числу Поленске - о количестве летучих кислот, нерастворимых в воде. Числом Рейхерта-Мейсля называется количество миллилитров 0,1 Мэ раствора едкого калия, необходимое для нейтрализации летучих, растворимых в воде жирных кислот, полученных при строго определенных условиях из 5 г жира. Число Поленске устанавливают вслед за определением летучих кислот в той же навеске жира. Выпавшие жирные кислоты переводят в спиртовой раствор и титруют 0,1 Мэ спиртовым раствором едкого калия.

Для более точного представления о количестве содержащихся в жирах глицеридов из числа омыления вычитают кислотное число и получают так называемое эфирное число (ЭЧ), которое характеризует только связанные жирные кислоты.

Иногда прогоркание жиров зависит от жизнедеятельности микроорганизмов, вызывающих окисление отщепленных жирных кислот в кетоны или альдегиды. Однако чаще всего прогоркание жиров обусловливается окислением ненасыщенных жирных кислот кислородом воздуха. Последний может присоединяться по месту двойных связей, образуя перекиси.

Кислород может присоединяться также и к углеродному атому, соседнему с двойной связью, образуя гидроперекиси.

Образовавшиеся перекиси и гидроперекиси подвергаются разложению с образованием альдегидов и кетонов. Для характеристики окислительного прогоркания жира используется константа, известная под названием перекисное число , которое выражается количеством иода, пошедшего на разрушение перекисей.

Высыхание. Намазанные тонким слоем жидкие жиры ведут себя на воздухе по-разному: одни остаются без изменения жидкими, другие, окисляясь, постепенно превращаются в прозрачную смолоподобную эластичную пленку - линоксин, нерастворимую в органических растворителях. Масла, не образующие пленку, называются невысыхающими. Главной составной частью в таких маслах являются глицериды олеиновой кислоты (с одной двойной связью). Масла, образующие плотную пленку, называются высыхающими. Главной составной частью в таких маслах являются глицериды линоленовой кислоты (с тремя двойными связями). Масла, образующие мягкие пленки, называются полувысыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты (с двумя двойными связями). Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность). Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию. Этой реакцией, известной под названием элаидиновая проба, широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены. Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов. Для аналитических целей обычно используют йод; под йодным числом понимается количество граммов иода, которое поглощается 100 г жира. Таким образом, по величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

ОПРЕДЕЛЕНИЕ

Жиры – сложные эфиры высших карбоновых кислот и глицерина.

Жиры и масла (жидкие жиры) – важные природные соединения. Все жиры и масла растительного происхождения почти целиком состоят из сложных эфиров глицерина (триглицеридов). В этих соединениях глицерин этерифицирован высшими карбоновыми кислотами.

Жиры имеют общую формулу:

Здесь R, R’, R’’ – углеводородные радикалы.

Три гидроксогруппы глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:


Основные предельные кислоты, образующие жиры – пальмитиновая С 15 Н 31 СООН и стеариновая С 17 Н 35 СООН; основные непредельные кислоты – олеиновая С 17 Н 33 СООН и линолевая С 17 Н 31 СООН.

Физические свойства жиров

Жиры, образованные предельными кислотами, — твердые вещества, а непредельными – жидкие. Все жиры очень плохо растворимы в воде.

Получение жиров

Жиры получают по реакции этерификации, протекающей между трехатомным спиртом глицерином и высшими карбоновыми кислотами:


Химические свойства жиров

Среди реакций жиров особое место занимает гидролиз, который можно осуществить действием как кислот, так и оснований:

а) кислотный гидролиз


б) щелочной гидролиз


Для масел (жидких жиров) характерны реакции присоединения:

— гидрирование (реакция гидрирования (гидрогенизации) лежит в основе получения маргарина)


— бромирование


Мерой ненасыщенности остатков кислот, которые входят в состав жиров, служит йодное число, выражаемое массой йода (в граммах), который может присоединиться по двойным связям к 100г жира. Йодное число важно при оценке высыхающих масел.

Масла (жидкие жиры) также подвергаются реакциям окисления и полимеризации.

Применение жиров

Жиры нашли широкое применение в пищевой промышленности, фармацевтике, в производстве масел и различных косметических средств, в производстве смазочных материалов.

Примеры решения задач

ПРИМЕР 1

Задание Растительное масло массой 17,56 г нагрели с 3,36 г гидроксида калия до полного исчезновения масляного слоя. При действии избытка бромной воды на полученный после гидролиза раствор образуется только одно тетрабромпроизводное. Установите возможную формулу жира.
Решение Запишем в общем виде уравнение гидролиза жира:


На 1 моль жира при гидролизе приходится 3 моль гидроксида калия. Найдем количество вещества гидроксида калия и жира, причем, количество жира втрое меньше:

Зная количество и массу жира, можно найти его молярную массу:

На три углеводородных радикала R кислот приходится 705 г/моль:

Зная, что тетрабромпроизводное получено только одно, можно сделать вывод, что все кислотные остатки одинаковы и содержат по 2 двойные связи. Тогда получаем, что в каждом радикале содержится 17 атомов углерода, это радикал линолевой кислоты:

Возможная формула жира:

Ответ Искомый жир — тилинолен

ПРИМЕР 2

Задание Напишите две возможные формулы жира, имеющего в молекуле 57 атомов углерода и вступающего в реакцию с иодом в соотношении 1:2. В составе жира имеются остатки кислот с четным числом углеродных атомов.
Ответ

где R, R’, R» — углеводородные радикалы, содержащие нечетное число атомов углерода (еще один атом из кислотного остатка входит в состав группы -СО-). На долю трех углеводородных радикалов приходится 57- 6 = 51 атом углерода. Можно предположить, что каждый из радикалов содержит по 17 атомов углерода.


Жиры , вещества животного (см. ), растительного (см. ) и микробного происхождения, состоящие в основном (до 98%) из триглицеридов (ацилглицеринов) полных эфиров и жирных кислот. Содержат также ди- и моноглицериды (1-3%), и (0,5-3%), свободные жирные кислоты, и их эфиры (0,05 1,7%), красящие вещества (каротин, ксантофилл), A, D, Е и К, полифенолы и их эфиры. Химические физические и биологические свойства жиров определяются входящими в их состав триглицеридами и, в первую очередь, длиной цепи, степенью ненасыщенности жирных кислот и их расположением в триглицериде. В состав жиров входят в основном неразветвленные жирные кислоты, содержащие четное число С (от 4 до 26) как насыщенные, так моно- и полиненасыщенные; в основном это миристиновая, пальмитиновая, стеариновая, 9-гексадеценовая, олеиновая, линолевая и линоленовая кислоты. Почти все ненасыщенные кислоты растительных жиров и большинства животных жиров являются цис -изомерами. Жиры жвачных животных содержат транс -изомеры. Триглицериды, содержащие остатки различных кислот, существуют в виде нескольких изомеров положения, а также в виде различных стереоизомеров, например:

Триглицериды природных жиров содержат по крайней мере две различные жирные кислоты. Различают триглицериды, содержащие три насыщенные кислоты (S 3), две насыщыщенную и одну ненасыщенную (соотв. SSU и SUS ), одну насыщенную и две ненасыщенную (соответственно SUU и USU ) и три ненасыщенные кислоты (U 3) (см. таблицу).


В растительных жирах основная часть ненасыщенных кислот расположена в β-положениях триглицеридов. При большом количестве ненасыщенных кислот они занимают также α-положения. Насыщенные кислоты в растительных жирах расположены главным образом в α-положениях. В животных жирах ненасыщенные кислоты также преимущественно занимают β-положение. Исключением является свиной жир в нем β-положение преимущественно занято насыщенными кислотами даже при низком содержании последних.

Физические свойства жиров

и для большинства жиров составляет 39,5 кДж/г; ΔH пл 120-150 Дж/г; С 0 р ок. 2 Дж/(г.К).

Жиры - плохие проводники тепла и электричества. Коэффициент 0,170 Вт/(м.К), диэлектрическая постоянная (30-40)·10 - 30 Кл.м. Температура вспышки большинства жиров 270-330°С, температура самовоспламенения 340-360 °С; характеристикой жира является также так называемая температура дымообразования (дымления), при которой происходит визуально заметное образование вследствие разложения жира . Она падает с ростом жира и лежит в пределах 160-230°С. Жиры неограниченно растворимы в . , частично растворимы в (5-10%) и , практически не растворимы в воде, но образуют с ней . В 100 г воды эмульгируются 10 мг говяжьего жира , 50 мг свиного. Жиры растворяют небольшие количества воды (0,1-0,4%) и значительные количества (7-10% по объему N 2 , H 2 , О 2 и до 100% СО 2). Растворимость Н 2 , N 2 , O 2 возрастает с ростом температуры, растворимость СО 2 падает.

Химические свойства жиров

жиров , конечные продукты которого глицерин и жирные кислоты, осуществляют в промышленности нагреванием их с водой до 200-225°С при 2-2,5.10 6 Па (безреактивный способ) или нагреванием при нормальном давлении в присутствии (катализатор Твитчела и контакт Петрова). Щелочной применяют в процессах мыловарения (см. ) и при наличии в жирнокислотных цепях гидроксильных групп. Скорости ферментативного гидролиза α- и β-сложноэфирных групп панкреатической различны, что используют для установления строения триглицеридов жиров .

Алкоголиз жиров , в частности метанолиз, используется как первая ступень непрерывного метода мыловарения. Глицеролиз действием применяют для получения моно-и диглицеридов, используемых в качестве эмульгаторов. Ацидолиз, например, ацетолиз кокосового жира с последующей избытка уксусной кислоты глицерином, приводит к смеси, состоящей из лауроилдиацетина, миристоилдиацетина и др. смешанных триглицеридов, применяемой в качестве нитроцеллюлозы. Большое практическое значение имеет реакция двойного обмена ацильными радикалами в триглицеридах (переэтерификация), протекающая как внутри-, так и межмолекулярно и приводящая к перераспределению остатков жирных кислот. При проведении этой реакции в однофазной жидкой системе (ненаправленная переэтерификация) происходит статистическое перераспределение кислотных остатков в образующейся смеси триглицеридов. Направленная (многофазная) осуществляется при такой температуре, при которой высокоплавкие триглицериды находятся в твердом, а низкоплавкие - в жидком состоянии. При направленной переэтерификации жиры обогащаются наиболее высокоплавкими (S 3) и наиболее низкоплавкими (U 3) триглицеридами. Ненаправленная и особенно направленная натуральных жиров используется для изменения их физических свойств - температуры плавления, пластичности, вязкости. и алкоголиз жиров проводят преимущественно в присутствии кислотных , переэтерификацию - в присутствии основных. Большое значение имеют восстановление (см. ) и цис -, транс -изомеризация непредельных ацильных остатков триглицеридов. Изомеризацию цис -изомеров ненасыщенных кислот в транс -изомеры (элаидирование) проводят при 100-200°С в присутствии катализаторов - Ni, Se, оксидов N, S. При изомеризации полиненасыщенных кислот (рыбий жир ) образуются кислоты с сопряженными двойными связями, обладающие высокой способностью к высыханию.

Прогоркание жиров , проявляющееся в появлении специфического запаха и неприятного вкуса, вызвано образованием низкомолекулярных карбонильных соединений и обусловлено рядом химических процессов. Различают два вида прогоркания - биохимическое и химическое. Биохимическое прогоркание характерно для жиров , содержащих значительное количесвтво воды и примеси белков и углеводов (например, для коровьего масла). Под воздействием содержащихся в белках ферментов (липаз) происходит гидролиз жира и образование свободных жирных кислот. Увеличение кислотности может не сопровождаться появлением прогорклости. Микроорганизмы, развивающиеся в жире , выделяют другие ферменты - липооксидазы, под действием которых жирные кислоты окисляются до β-кетокислот. Метилалкилкетоны, образующиеся при распаде последних, являются причиной изменения вкуса и запаха жира . Во избежание этого производится тщательная очистка жиров от примесей белковых веществ, хранение в условиях, исключающих попадание микроорганизмов, и при низкой температуре, а также добавка консервантов (NaCl, бензойная кислота).

Химическое прогоркание - результат окисления жиров под действием О 2 воздуха (автоокисление). Первая стадия - образование пероксильных радикалов при атаке молекулярным О 2 углеводородных остатков как насыщенных, так и ненасыщенных жирных кислот. Реакция промотируется светом, теплом и соединениями, образующими свободные радикалы (пероксиды, переходные металлы). Пероксильные радикалы инициируют неразветвленные и разветвленные цепные реакции, а также распадаются с образованием ряда вторичных продуктов - гидроксикислот, эпоксидов, кетонов и альдегидов. Последние и вызывают изменение вкуса и запаха жира . Для жиров , в которых преобладают насыщенные жирные кислоты, характерно образование кетонов (кетонное прогоркание), для жиров с высоким содержанием ненасыщенных кислот - альдегидное прогоркание. Для замедления и предотвращения химического прогоркания используют ингибиторы радикальных реакций: смесь 2- и 3-трет -бутил-4-гидроксианизола (БОА), 3,5-ди-трет -бутил-4-гидрокситолуол (БОТ), эфиры галловой кислоты, а также соедиенния, образующие комплексы с тяжелыми металлами (например, лимонная, аскорбиновая кислоты).

Биологическая роль жиров

Жиры - одна из основных групп веществ, входящих, наряду с белками и углеводами, в состав всех растительных и животных клеток. В организме животных различают запасные и плазматические жиры . Запасные жиры откладываются в подкожной клетчатке и в сальниках и являются источником энергии. Плазматические жиры структурно связаны с белками и углеводами и входят в состав большинства мембран. Жиры обладают высокой энергетической ценностью: при полном окислении в живом организме 1 г жира выделяется 37,7 кДж, что в два раза больше, чем при окислении 1 г белка или углевода. Благодаря низкой жиры играют важную роль в теплорегуляции животных организмов, предохраняя животных, особенно морских, от переохлаждения. Вследствие своей эластичности жиры играют защитную роль в коже позвоночных и в наружном скелете насекомых. Жиры - необходимая составная часть пищи. Норма потребления взрослым человеком - 80-100 г/сут.

Анализ жиров

Жиры не являются индивидуальными веществами, поэтому для их определения мало применимы классические методы анализа. Для сравнительной оценки чистоты жиров и их идентификации определение температуры проводят в специальных стандартных условиях. Различают температуру подъема, при которой образец, находящийся в открытом с обоих концов капилляре и помещенный в термостат, начинает подниматься к верху капилляра; температуру растекания, при которой образец, помещенный в U-образный капилляр, начинает течь; температуру просветления, при которой образец становится совершенно прозрачным. Кроме того, определяют температуры истечения и каплепадения на приборе Уббелоде. Определяется также так называемый титр жира - температура застывания смеси жирных кислот, выделенных из данного жира . Титр жира - характерная величина, на которой не сказывается полиморфизм жирных кислот.

Химические свойства жиров обусловлены наличием:

1. Сложных эфирных связей,

2. Двойных связей в углеводородных радикалах жирных кислот,

3. Наличием глицерина в составе жира.

1. Обусловленные наличием сложных эфирных связей

Жиры легко подвергаются гидролитическому расщеплению при участии ферментов, образуется глицерин и жирные кислоты.

Ферментативный гидролиз происходит ступенчато. Фермент - липаза содержится во всех жирномасличных растениях. Гидролизу способствует влага и повышенная температура. Происходит гидролитическое прогоркание жира.

Указанное свойство учитывается при хранении жиров.

Жиры расщепляются под действием щелочей с образованием глицерина и солей жирных кислот. Образующиеся соли называют мылами: калиевые мыла – жидкие, натриевые - твердые.

Процесс называют омылением

C 3 H 5 (COOR) 3 + 3 NaOH C 3 H 5 (OH) 3 + 3 R`COONa

Свойство учитывают в анализе жира. Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности.

Чем больше число омыления, тем меньше молекулярная масса глицеридов.

2. Обусловленные наличием двойных связей в углеводородных радикалах жирных кислот

По двойньм связям жирных кислот может присоединяться водород, галогены, кислород.

1). Присоединение водорода - гидрирование жиров (гидрогенизация жиров) идет при повышенной температуре в присутствии катализатора (трубчатый никель).

Непредельные жирные кислоты переходят в предельные, жидкие масла превращаются в твердые. Получают саломассы, их используют в медицинской практике как мазевые и суппозиторные основы (бутирол) и в пищевой промышленности - производство маргарина.

Реакция гидрогенизации широко используется для получения плотных жиров из растительных масел.

2). Присоединение галогенов – это свойство используют в анализе жиров. При определении химической константы - йодного числа.

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены.

Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов.

По величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

Йодное число некоторых масел

Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность).

Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию.

Этой реакцией, известной под названием элаидиновая проба , широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

3). Присоединение кислорода воздуха приводит к окислению и прогорканию жиров. Может быть химическое окисление (альдегидное) и биохимическое при участии микроорганизмов (кетонное). Жиры приобретают специфический вкус и запах и к употреблению непригодны. Изменяется цвет жира - чаще обесцвечиваются; изменяются физические и химические свойства жира: увеличивается плотность и кислотное число, уменьшается йодное число и вязкость.

Различают 3 вида окислительного прогоркания:

1 - неферментативное - кислород присоединяется по месту двойных связей, образуя пероксиды; при разложении пероксидов жирных кислот получаются альдегиды.

R 1 – CH = CH – R 2 R 1 – CH – CH – R 2 R 1 – C = O + R 2 – C = O

Природные эфиры - жиры и масла , которые образованы трехатомным спиртом глицерином и высшими карбоновыми кислотами неразветвленного состава. Жиры входят в состав растительных и животных организмов и играют важную биологическую роль. Они служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Общая формула:

Наиболее часто встречаются следующие жирные кислоты:


Физические свойства жиров и масел.

Делят на жидкие и твердые жиры . Агрегатное состояние определяется природой жирных кислот . Твердые жиры образованы предельными кислотами, а жидкие - непредельными. Температура плавления выше, чем больше у кислоты содержания углеводородной цепи. Также она зависит от длины углеводородной цепи жирной кислоты, температура плавления повышается с ростом углеводородного радикала.

Химические свойства жиров и масел.

1. Гидролиз:

2. Гидрогенизация жиров - присоединение водорода к остатком непредельных кислот. При этом непредельные кислоты переходят в остатки предельных, из жидких превращаются в твердые:


3. Жиры могут прогорать при действии влаги, кислорода воздуха, света и тепла.

Применение жиров и масел.

Жиры широко используются в пищевой, косметической и фармацевтической промышленности.