Ветеринар на дом в любое время суток. Новые миорелаксанты и проблемы использования их в ветеринарии

МИОРЕЛАКСАНТЫ (греч. mys, my мышца + лат. relaxare ослаблять, смягчать; син. мышечные релаксанты ) - лекарственные средства, уменьшающие тонус скелетных мышц и вызывающие в связи с этим снижение двигательной активности вплоть до полной обездвиженности.

Различают М. центрального и периферического типов действия.

К М. периферического действия относят курареподобные вещества (см.), к-рые вызывают релаксацию скелетных мышц за счет блокады нервно-мышечной передачи (см. Синапс). В соответствии с характером влияния на нервно-мышечную передачу среди препаратов этой группы выделяют вещества деполяризующего (дитилин и др.), не деполяризующего (тубокурарина диплацин, квалидил и др.) и смешанного (диоксоний и др.) типов действия. Кроме того, к М. периферического действия можно отнести фармакологически активные соединения, оказывающие прямое угнетающее влияние на тонус и сократимость скелетных мышц путем снижения выделения ионов Ca 2+ из саркоплазматического ретикулума мышечной ткани. В отличие от курареподобных средств такие соединения угнетают прямую возбудимость скелетных мышц и не влияют на нервно-мышечную передачу. Т. о., эти вещества можно рассматривать как периферические М. прямого миотропного действия.

К препаратам данной группы относится дантролен (Dantrolene; 1 -[(5-арилфурфурилиден) амино]-гидантоин), к-рый применяется в мед. практике гл. обр. в виде натриевой соли (Dantrolene sodium; син. Dantrium). Наряду с релаксацией мышц дантролен оказывает нек-рое угнетающее влияние на ц. н. с. Однако в отличие от М. центрального типа действия он не влияет на центральные механизмы регуляции мышечного тонуса (см.). Чувствительность различных групп скелетных мышц к дантролену неодинакова (мышцы конечностей более чувствительны к его действию, чём дыхательная мускулатура). Препарат удовлетворительно всасывается при различных путях введения, и в т. ч. из жел.-киш. тракта, медленно метаболизируется в печени и выделяется почками преимущественно в виде неактивных метаболитов и частично в неизмененном виде. Период полувыведения его из организма - ок. 9 час.

К М. центрального действия относят так наз. мианезиноподобные (мефенезиноподобные) вещества, к-рые по своим свойствам и механизму мышечно-расслабляющего действия близки к мианезину (мефенезину) - первому препарату этой группы, внедренному в мед. практику. По хим. структуре М. центрального действия можно разделить на следующие группы: 1) производные пропандиола - мианезин, мепротан (см.), изопротан (см.) и др.; 2) производные оксазолидина - метаксолон, хлорзоаксазон; 3) бензодиазепины - диазепам (см.), хлордиазепоксид (см.) и др.; 4) препараты разного хим. строения - орфенадрин и др. Свойствами М. центрального действия обладает также мидокалм.

В эксперименте М. центрального действия уменьшают спонтанную двигательную активность животных и снижают мышечный тонус. В очень высоких дозах они вызывают вялый паралич скелетной мускулатуры и апноэ, обусловленное релаксацией дыхательных мышц. В субпаралитических дозах М. центрального действия устраняют у животных явления децеребрационной ригидности и гиперрефлексии, ослабляют судороги, вызываемые стрихнином и электрическим током. Кроме того, большинство М. центрального действия обладает седативными, а нек-рые препараты (напр., бензодиазепины, мепротан) транквилизирующими свойствами и способностью потенцировать действие снотворных и анальгетических средств.

В отличие от М. периферического действия центральные М. даже в сублетальных дозах практически не влияют на нервно-мышечную передачу или прямую возбудимость скелетных мышц. Механизм мышечнорасслабляющего действия препаратов этой группы обусловлен их угнетающим влиянием на синаптическую передачу возбуждения в ц. н. с. Общим свойством центральных М. является способность подавлять активность вставочных нейронов полисинаптических рефлекторных путей спинного мозга и нек-рых вышележащих отделов ц. н. с. В связи с этим М. центрального действия активно угнетают полисинаптические рефлексы и существенно не влияют на моносинаптические рефлексы. Определенное значение в механизме действия центральных М. имеет также угнетение нисходящих тормозных и облегчающих влияний со стороны ряда надсегментарных структур (ретикулярная формация, подкорковые ядра) на двигательные центры спинного мозга.

М. используют в различных областях мед. практики в целях снижения тонуса скелетной мускулатуры. При этом выбор препаратов для той или иной цели осуществляется с учетом широты их миопаралитического действия. Так, подавляющее большинство курареподобных веществ деполяризующего, не деполяризующего и смешанного типов действия, имеющих малую широту миопаралитического действия, используют в целях тотальной миорелаксации гл. обр. в анестезиологии, а также при лечении столбняка и для профилактики травматических осложнений при проведении электросудорожной терапии.

Центральные М., дантролен и курареподобные средства из числа третичных аминов - мелликтин (см.) и др.- имеют большую широту миопаралитического действия, что позволяет использовать их в целях снижения мышечного тонуса без угнетения или выключения спонтанного дыхания. Такие препараты используют при заболеваниях, сопровождающихся патол, повышением тонуса скелетных мышц. В неврол, практике, напр., их применяют при спастических состояниях различного происхождения (церебральные и спинномозговые параличи, болезнь Литтла, спастическая кривошея и др.). М. центрального действия применяют также при мышечных контрактурах травматического или воспалительного (напр., при ревматических заболеваниях) происхождения. Применение препаратов данной группы при указанной патологии способствует не только уменьшению болевых ощущений в мышцах пораженной области (вследствие снижения тонуса мышц), но и позволяет более эффективно осуществлять реабилитацию больных, т. к. устранение контрактур облегчает проведение леч. физкультуры. В анестезиол, практике М. центрального действия и дантролен используют относительно реже, чем курареподобные вещества, и применяют по иным показаниям.

Побочное влияние М. центрального действия и дантролена проявляется гл. обр. слабостью, сонливостью, головокружением, диспептическими расстройствами. Возможно появление аллергических реакций. Указанные препараты не следует назначать во время работы лицам, профессия к-рых требует точных и быстрых психических и двигательных реакций (водители транспорта и др.).

Применение миорелакеантов в анестезиологии

В анестезиологии для достижения глубокой мышечной релаксации при проведении оперативных вмешательств, нек-рых диагностических процедур и искусственной вентиляции легких используют препараты из группы курареподобных веществ. В зависимости от предполагаемой продолжительности оперативного вмешательства или диагностической процедуры выбор отдельных курареподобных препаратов производят с учетом длительности их действия. Так, для кратковременной (в течение нескольких минут) миорелаксации (при интубации трахеи, вправлении вывихов, репозиции костных отломков, кратковременных операциях и диагностических процедурах) целесообразно использовать курареподобные препараты короткого действия, напр, дитилин (см.), тубокурарин (см.), анатруксоний (см.), павулон и др.; препараты с большой продолжительностью действия применяют гл. обр. для поддержания длительной миорелаксации в течение операций под наркозом с управляемым дыханием, при искусственной вентиляции легких, сложных и продолжительных диагностических процедурах. Дитилин для достижения длительной миорелаксации может быть использован только при условии его введения фракционным способом или методом капельной инфузии. При помощи курареподобных препаратов можно вызвать тотальную или частичную блокаду нервно-мышечной передачи. К тотальной блокаде прибегают во время длительных операций, требующих глубокой миорелаксации и выполняемых, как правило, в условиях эндотрахеальной общей анестезии (см. Ингаляционный наркоз).

В случаях, когда не требуется тотальной миорелаксации. но в ходе операции может понадобиться расслабление мышц определенной части тела (живота, конечностей), осуществляют частичную блокаду скелетной мускулатуры введением малых доз курареподобных препаратов. Наиболее удобны для этой цели препараты не деполяризующего типа действия.

В связи с сохранением спонтанного дыхания оперативные вмешательства в этом случае могут быть выполнены под масочным наркозом при условии тщательного наблюдения за состоянием газообмена и готовности компенсировать ею нарушения вспомогательной или искусственной вентиляцией легких (см. Искусственное дыхание). Методика проведения тотальной миорелаксации при наркозе, проводимом при помощи специальных масок (см. Маска для наркоза) без интубации трахеи, широкого распространения не получила.

При комбинированном применении курареподобных препаратов следует помнить, что введение обычной дозы недеполяризующих веществ (напр., тубокурарина) после неоднократных инъекций дитилина вызывает более глубокий и продолжительный нервно-мышечный блок, чем в обычных условиях. Многократное введение дитилина после применения недеполяризующих препаратов в обычных дозах вслед за кратковременным антагонизмом приводит к углублению нервно-мышечного блока конкурентного типа и затягиванию периода восстановления мышечного тонуса и дыхания. Для оценки характера нервно-мышечной блокады, вызываемой курареподобными препаратами, может быть использован метод электромиографии (см.). Электромиографически недеполяризационный нервно-мышечный блок характеризуется постепенным снижением амплитуды потенциала действия мышцы без предшествующего облегчения нервно-мышечной передачи и мышечных фасцикуляций, выраженным пессимумом частоты раздражения и феноменом посттетанического облегчения. Для деполяризационного (двухфазного) нервно-мышечного блока характерно преходящее облегчение нервно-мышечной передачи, сопровождающееся мышечными фасцикуляциями, и быстрое последующее развитие нервно-мышечного блока. В первой фазе амплитуда одиночного потенциала действия мышцы снижена, тетанус устойчив, феномен посттетанического облегчения отсутствует. Во второй фазе выявляются более или менее выраженные пессимум частоты раздражения и феномен посттетанического облегчения нервно-мышечной передачи. Электромиографические признаки второй фазы отмечаются уже при первом введении дитилина и диоксония, а с увеличением числа инъекций выраженность и устойчивость этих признаков возрастают.

Применение курареподобных препаратов при миастении представляет особую проблему. Больные миастенией (см.) чрезвычайно чувствительны к препаратам деполяризующего типа. Введение им стандартной дозы дитилина приводит к развитию двухфазного нервно-мышечного блока с ярко выраженными признаками второй фазы, в связи с чем повторные инъекции препарата могут привести к чрезмерно длительной и глубокой миорелаксации, нарушению восстановления дыхания и мышечного тонуса. При оперативном лечении миастении получила распространение методика аутокураризации, заключающаяся в снижении дозы или отмене антихолинэстеразных средств перед операцией, использовании минимальной дозы дитилина при интубации и проведении гипервентиляции во время операции, что позволяет избежать повторных введений этого препарата или ограничиться минимальными его дозами.

Абсолютных противопоказаний к применению курареподобных средств нет, однако при нек-рых заболеваниях могут быть противопоказаны отдельные препараты данной группы. Поэтому большое значение имеет рациональный и обоснованный выбор курареподобных препаратов с учетом характера основного и сопутствующих заболеваний. Так, у больных с почечной недостаточностью, нарушениями водно-электролитного равновесия, ацидозом, гипопротеинемией отмечается повышенная чувствительность к М. из группы курареподобных веществ недеполяризующего типа действия (тубокурарин и др.), а также к курареподобным препаратам смешанного типа действия (диоксонию и др.) в связи с нарушением распределения и элиминации этих препаратов. Частой причиной необычно длительного действия дитилина является снижение активности псевдохолинэстеразы - фермента, осуществляющего гидролиз этого препарата (при генетических дефектах фермента, заболеваниях печени, злокачественных новообразованиях, хрон, нагноительных процессах, кровотечениях, истощении). Нежелательно применять дитилин во время глазных операций и у больных с повышенным внутричерепным давлением в связи с его способностью повышать внутриглазное и внутричерепное давление. Применение дитилина опасно также у лиц с обширными ожогами, параплегией, длительной иммобилизацией.

Осложнения при применении курареподобных средств в значительной степени обусловливаются нерациональным выбором препаратов для данного больного, а также применением препаратов без учета характера их взаимодействия между собой и с препаратами из других групп лекарственных средств. Наиболее частым осложнением при применении курареподобных средств в анестезиологии является продленное апноэ - необычно длительное угнетение дыхания и мышечного тонуса после использования средней дозы препарата. После введения препаратов конкурентного типа, а также диоксония продленное апноэ может развиться у больных с почечной недостаточностью, ацидозом, нарушениями водно-электролитного равновесия, гиповолемией и в результате потенцирующего влияния нек-рых препаратов (общих и местных анестетиков, ганглиоблокаторов, хинидина, дифенина, бета-адреноблокаторов). Неоднократные инъекции дитилина, предшествующие введению тубокурарина, также могут способствовать развитию продленного апноэ. Миопа-ралитическое действие дитилина отчетливо потенцируют антихолинэстеразные средства, пропанидид, аминазин, цитостатики (циклофосфан, сарколизин), трасилол. Кроме того, причиной замедленного восстановления дыхания и мышечного тонуса после применения дитилина могут явиться гиперкапния (см.) и дыхательный ацидоз (см.). Для декураризации широко используют антихолинэстеразные средства (прозерин, галантамин и др.), блокирующие холинэстеразу и способствующие тем самым накоплению ацетилхолина в нервно-мышечных синапсах, что приводит к облегчению нервно-мышечной передачи, нормализации дыхания и мышечного тонуса. Возможно также применение средств, увеличивающих синтез и выделение ацетилхолина в нервно-мышечных синапсах (джермин, пимадин и менее эффективные гидрокортизон, пантотенат кальция).

Грозным, хотя и сравнительно редким осложнением, связанным с применением курареподобных веществ, является рекураризация. Под рекураризацией понимают углубление остаточной миорелаксации вплоть до апноэ или резкого угнетения дыхания, к-рое развивается, как правило, в первые два часа после операции под влиянием ряда факторов, нарушающих распределение, метаболизм и элиминацию препаратов. К таким факторам относятся дыхательный и метаболический ацидоз, нарушения водно-электролитного равновесия, гиповолемия, артериальная гипотония, воздействие нек-рых препаратов (антибиотиков из группы аминогликозидов, хинидина, трасилола, циклофосфана), неадекватная декураризация антихолинэстеразными средствами в конце операции.

После введения дитилина и, в меньшей степени, диоксония происходит освобождение заметных количеств калия из скелетных мышц во внеклеточную жидкость, в результате чего нередко развивается преходящая брадикардия, реже - атриовентрикулярный блок, очень редко - асистолия (последние два осложнения описаны только после применения дитилина).

Тубокурарин и квалидил обладают способностью освобождать гистамин, в связи с чем отмечается преходящая тахикардия, не требующая обычно специального лечения. К редким осложнениям, связанным с применением тубокурарина и других курареподобных веществ недеполяризующего действия, относится так наз. прозериноустойчивая кураризации. Обычно причиной неэффективности антихолинэстеразных средств, примененных с целью декураризации, является их введение на фоне очень глубокой блокады нервно-мышечной передачи либо на фоне метаболического ацидоза. Описаны случаи прозериноустойчивой кураризации после применения средней дозы тубокурарина на фоне неоднократного предварительного введения дитилина.

Лечение осложнений: обеспечение адекватной искусственной вентиляции легких вплоть до восстановления нормального мышечного тонуса и устранение причины осложнения.

В анестезиологии М. используют и по другим показаниям. Так, М. центрального действия, обладающие выраженным транквилизирующим действием, напр, диазепам, мепротан, можно использовать в качестве средств для премедикации перед наркозом (см.). Мидокалм применяют при проведении электроанестезии (см.). Диазепам в комбинации с наркотическим анальгетиком фентанилом применяют для целей так наз. атаралгезии (сбалансированной анестезии) при проведении нек-рых оперативных вмешательств. Кроме того, М. центрального действия иногда используют для подавления мышечной дрожи и снижения теплопродукции при гипертермическом синдроме (см.). Способностью купировать проявления этого синдрома, возникающего иногда после применения ингаляционных анестетиков (напр., фторотана) и дитилина, обладает также дантролен.

Библиография: Харкевич Д. А. Фармакология курареподобных средств, М., 1969; The pharmacological basis of therapeutics, ed. by L. S. Goodman a. A. Gilman, p. 239, N. Y. a. o., 1975; Physiological pharmacology, ed. by W. S. Root a. F. G. Hoffmann, v. 2, p. 2, N. Y.-L., 1965; PinderR.M. a. o. Dantrolene sodium, a review of its pharmacological properties and therapeutic efficacy in spasticity, Drugs, v. 13, p. 3, 1977.

В. К. Муратов; В. Ю. Словентантор, Я. М. Хмелевский (анест).

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Ларина Юлия Вадимовна. Фармако- токсикологическая оценка миорелаксанта адилинсульфама: диссертация... кандидата биологических наук: 16.00.04 / Ларина Юлия Вадимовна; [Место защиты: ФГУ "Федеральный центр токсикологической и радиационной безопасности животных"].- Казань, 2009.- 117 с.: ил.

Введение

2. Обзор литературы

2.1 История применения миорелаксантов 9

2.2 Классификация миорелаксантов по механизму действия 12

2.3 Новые миорелаксанты и проблемы использования их в ветеринарии 29

3. Материал и методы исследования 3 5

4. Результаты собственных исследований

4.1 Определение острой токсичности адилинсульфама и особенности проявления миорелаксации у разных видов животных 42

4.2 Определение кумулятивных свойств адилинсульфама 47

4.3 Влияние адилинсульфама на морфологические и биохимические показатели крови 49

4.4 Изучение эмбриотоксических, тератогенных и мутагенных свойств адилинсульфама 50

4.5 Оценка безвредности мяса, полученного от животных, убитых с помощью адилинсульфама 56

4.6 Оценка опасности временной иммобилизации беременных самок 60

4.7 Определение стабильности препарата при хранении 65

4.8 Испытание препарата адилинсульфама на стерильность и пирогенность 66

4.9 Испытание на наличие у адилинсульфама аллергических и раздражающих свойств 68

4.10 Разработка метода индикации адилинсульфама в растворах, органах и тканях животных 69

4.11 Отработка лекарственной формы адилинсульфама 74

4.12 Скрининг потенциальных антагонистов 76

5. Обсуждение результатов 90

Список использованной литературы 101

Приложения 120

Введение к работе

Актуальность темы. Применение средств для временного обездвиживания животных - миорелаксантов является одной из актуальных проблем при работе с "домашними и"дикими-животными приоказании-им лечебной помощи, отлове, мечении или транспортировке (Стоув К.М., 1971; Чижов М.М., 1992; Jalanka Н.Н., 1992). Они же в больших дозах применяются в качестве средств массового бескровного убоя животных, заболевших или подозрительных на заболевание, в практике предупреждения и ликвидации эпизоотии, когда возбудителями являются особо опасные инфекции (ящур, сибирская язва и др.). Бескровный метод убоя незаменим в пушном звероводстве с целью получения полноценного качественного меха (Ильина Е.Д., 1990). Кроме того, до сих пор остается неизученной проблема возможности использования в пищу мяса продуктивных сельскохозяйственных и охотничьих животных, которые были убиты или случайно погибли с использованием деполяризующих миорелаксантов (Макаров В. А., 1991).

В нашей стране давно известно применение для обездвиживания животных полученного в 1958 г дитилина, относящегося к деполяризующим миорелаксантам (Харкевич Д. А., 1989). Препараты данной группы первоначально вызывают активизацию Н-холинорецепторов, в результате которой возникает стойкая деполяризация постсинаптической мембраны, после чего наступает расслабление скелетных мышц.

В настоящее время применение дитилина в практике животноводства затруднено, в связи со сложностью его приобретения и производства, поскольку для этого необходимо импортировать исходный реагент - хлористый метил. Он имеет некоторые побочные эффекты при использовании его для временного обездвиживания животных, а именно: малая широта миопаралитического действия - коэффициент безопасности; и, кроме того, в больших количествах препарат ограниченно растворяется в воде, что затрудняет его использование на крупных животных и при низких температурах (Сергеев П.В., 1993; Царев А., 2002).

В последние годы появлялись публикации о новых миорелаксантах - пирокурине и амидокурине, которые имеют значительно большую «широту миорелаксирующего действия» по сравнению с известными и применявшимися ранее и теперь d-тубокурарином, дитилином и их аналогами (Харкевич Д.А., 1989; Чижов М.М., 1992). Однако пока информация о них скудная и недостаточная для суждения об их перспективности и доступности.

Также в ветеринарной практике получил широкое распространение ксилазин, который по механизму действия относится к агонистам альфа2- адренорецепторов и, по некоторым данным (Sagner G., Haas G., 1999), вызывает у животных сноподобное состояние, т.е. как бы позволяющее их пробудить. Однако, именно длительное пробуждение, как и отсутствие антагонистов, нередко указывается в качестве недостатков рецептур на основе как ксилазина, так и его более поздних аналогов из числа альфагадренорецепторных агонистов - детомидина и медетомидина (Jalanka Н.Н., Приведенные литературные данные указывают на необходимость совершенствования средств ветеринарной медицины, предназначенных для временного и предубойного обездвиживания животных. Факторы эффективности, надежности, экономичности, доступности в практике их использования в настоящее время приобретают решающее значение.

В связи с этим поиск новых эффективных и безопасных препаратов является актуальной задачей теоретической и практической ветеринарной медицины.

В ФГУ «ФЦТРБ-ВНИВИ» накоплен опыт временного обездвиживания и убоя животных при помощи деполяризующих миорелаксантов - дитилина и его структурного аналога адилина.

Новый миорелаксант этой же группы адилинсульфам был синтезирован Р.Д.Гареевым и соавторами в качестве более технологичного, дешевого и стабильного аналога дитилина и адилина.

Цель исследования: "" фармако-токсикологическая оценкаадилинсульфама и экспериментальное обоснование возможности применения его в ветеринарии в качестве потенциального лекарственного средства ветеринарной медицины для временного, предубойного обездвиживания и бескровного убоя животных.

Задачи исследования. Для достижения цели были поставлены следующие задачи:
. определить параметры острой токсичности и специфической миорелаксирующей активности адилинсульфама для разных видов животных;
. оценить безопасность применения адилинсульфама, включая токсичность при поступлении внутрь и отдаленные последствия (эмбриотоксичность, тератогенность, постнатальное развитие и др.) на лабораторных животных по принятым критериям;
. изучить стабильность препарата при хранении, его фармакодинамику и фармакокинетику в организме животных;
. на основании результатов исследований разработать проект нормативной документации и инструкцию по применению адилинсульфама в ветеринарии.

Научная новизна. Впервые на лабораторных, домашних и некоторых видах продуктивных животных изучены токсичность и специфическая эффективность и безопасность применения адилинсульфама для временного, предубойного обездвиживания и бескровного убоя животных. Разработан метод тонкослойной хроматографии для определения препарата в органах и тканях животных, с помощью которого изучена фармакокинетика адилинсульфама в организме животных и установлена высокая скорость его метаболизма. При скрининге потенциальных антидотов и корректоров впервые выявлены 4 соединения - антагонисты, предотвращающие гибель животных после введения им летальных доз адилинсульфама.

Практическая ценность. На основании результатов исследований предлагается для вётеринарнойПпрактики-новое- лекарственноесредство^ - адилинсульфам для бескровного убоя и обездвиживания животных.

Полученные экспериментальные данные использованы при составлении проектов нормативных документов: лабораторного регламента, ТУ и Инструкции по применению препарата, которые будут представлены для госрегистрации адилинсульфама Основные положения, выносимые на защиту: фармакологическая и токсикологическая характеристика адилинсульфама в качестве лекарственного средства ветеринарной медицины; применение адилинсульфама для временного, предубойного обездвиживания и бескровной эвтаназии животных;
. обоснование безвредности и технологии применения адилинсульфама в ветеринарии.

Апробация работы. Результаты исследований по теме диссертации доложены, обсуждены и одобрены на научных сессиях ФГУ «ФЦТРБВНИВИ» по итогам НИР за 2005-2008 гг.; на международной научной конференции «Токсикозы животных и актуальные проблемы болезней молодняка», Казань - 2006 г; научно-практической конференции молодых ученых и специалистов «Актуальные проблемы ветеринарии», Казань - 2007 г., «Первом Съезде ветеринарных фармакологов России», Воронеж - 2007 г., научно-практической конференции молодых ученых и специалистов «Достижения молодых ученых - в производство», Казань - 2008 г.

Объем и структура диссертации. Диссертация изложена на 119 страницах компьютерного текста и состоит из введения, обзора литературы, материала и методов исследований, собственных результатов, обсуждения, выводов, практических предложений, списка литературы. Работа содержит 26 таблиц и 2 рисунка. Список использованной литературы включает 204 источника, в том числе 69 иностранных.

Классификация миорелаксантов по механизму действия

Исходя из локализации действия миорелаксантов, их принято подразделять на две группы: центральные и периферические. К центральным чаще относят некоторые транквилизаторы: мепробамат (мепротан) и тетразепам; мианезин, зоксазоламин, а также центральные холинолитики: циклодол, амизил и другие (Машковский М.Д., 1998). Периферические или курареподобные лекарственные средства (d-тубокурарин-хлорид, парамион, диплацин, дитилин, декаметоний и др.) подразделяются по механизму их действия. Курареподобные средства характеризуются тем, что они блокируют нервно-мышечную передачу, в то-время как мианезиноподобные препараты снижают мышечный тонус вследствие нарушения проведения возбуждения в центральной нервной системе. Эти вещества действуют подобно природному передатчику нервных импульсов ацетилхолину в области соединения нерва и мышцы - так называемой, концевой пластинки синапса. Поступая с током крови в это место после парентерального введения, они, в отличие от ацетилхолина, либо препятствуют деполяризации пластинки и тем нарушают проведение по нерву, либо вызывают ее стойкую деполяризацию с аналогичным эффектом. В результате этого мышцы расслабляются, хотя при этом и наблюдаются мелкие сокращения (фасцикуляции) отдельных мышц, особенно заметные на грудной клетке и в области брюшных мышц (Жуленко В.Н., 1967).

В хирургической практике при операциях брюшной полости, малого таза и грудной клетки миорелаксация является неотъемлемым компонентом общей анестезии наряду с седацией, анальгезией и арефлексией (Гологорский В.А., 1965).

Были предложены варианты классификации: по химическому строению, механизму действия и продолжительности действия. В настоящее время общепринятым является разделение миорелаксантов по механизму действия: по генезу вызываемого ими нейромышечного блока. Первые -вещества группы d-тубокурарина препятствуют деполяризующему действию ацетилхолина. Вторые - вещества группы сукцинилхолина вызывают деполяризацию постсинаптической мембраны и тем самым вызывают блокаду, что вполне обосновано для первой фазы действия из действия как деполяризующих миорелаксантов (Thesleff S., 1952; Брискин А.И., 1961; Ререг К., 1974). По данным Данилова А.Ф. (1953) и Бунатяна А.А., (1994), в основе 2-й фазы лежат механизмы прогрессирующей десенситизации и развивающейся тахифилаксии.

Исследование физиологии нервно-мышечной проводимости и фармакологии нервно-мышечных блокаторов показали, что природа блокады проводимости при введении релаксантов щшгїціігшально не различается-(Франсуа Ш., 1984), но механизм ее у деоляризующих и антидеполяризующих препаратов различен (Dillon J.B, 1957; Wastila W.B., 1996). Деполяризующие образуют как бы «островок» стойкой деполяризации на концевой пластинке в середине нормально деполяризованной мембраны мышечного волокна (BuckM.L., 1991; Харкевич Д.А., 1981).

Деполяризующие миорелаксанты широко применяют для обездвиживания животных, как у нас в стране (дитилин), так и за рубежом (миорелаксин, сукцинилхолин йодид либо хлорид, анектин).

Термин «холиномиметический» относят к эффектам лекарств, подобных по действию ацетилхолину, который обычно способствует возбуждению (стимуляции), а в более высоких дозах, блокаде нервно-мышечного соединения, будь то в скелетных мышцах или гладких мышцах внутренних органов. Классическим примером такого двоякого воздействия на холинорецепторы в зависимости от дозы/концентрации может служить и всем известный никотин (Харкевич Д.А., 1981; Машковский М.Д., 1998).

В отношении дитилина и других деполяризующих миорелаксантов следует отметить, что при их введении по мере того, как усиливается миорелаксация, прогрессирует паралитический эффект, - последовательно вовлекаются мышцы шеи, конечностей, снижается тонус мышц головы: жевательных, лицевых, язычных и гортани. На этой стадии существенного ослабления дыхательных мышц еще не наблюдается, и жизненная емкость легких снижается лишь до 25% (Unna K.R., Pelican E.W., 1950).

На основе последовательности вовлечения в процесс расслабления скелетных мышц было постулировано, что деполяризующие миорелаксанты, в частности, декаметоний (СЮ), отличается от d-тубокурарина, который относится к антидеполяризующим миорелаксантам. По данным ряда авторов (Unna K.K., Pelican E.W., 1950; Foldes F.F., 1966; Grob D., 1967), наиболее важное их отличие проявляется в том, что СЮ вызывает мышечную релаксацию в дозах, которые "щадят" дыхательные мышцы.

Ниже нами будут рассмотрены некоторые существенные длянашего - - исследования теоретические аспекты, связанные с общей фармакологической классификацией и практикой применения курареподобных веществ.

По этой классификации миорелаксанты относятся к средствам, влияющим главным образом на эфферентную иннервацию, а именно - на передачу возбуждения в Н-холинэргических синапсах (Харкевич Д.А., 1981, 2001; Субботин В.М., 2004). Двигательные нейроны, иннервирующие поперечно-полосатую мускулатуру, являются Н-холинергическими. В зависимости от дозы веществ можно наблюдать различные степени эффекта - от незначительного понижения двигательной активности до полного расслабления (паралича) всех мышц и остановки дыхания.

К настоящему времени из растительных источников и синтетическим путем получено большое количество курареподобных веществ, относящихся к разным классам химических соединении.

При классификации курареподобных средств обычно исходят их следующих принципов (Харкевич Д.А., 1969, 1981, 1989, 1983; Foldes F., 1958; Cheymol J., 1972; Zaimis E.,1976; Bowman W., 1980): химического строения и механизма нервно-мышечного блока, продолжительности эффекта, широты миопаралитического действия, последовательности расслабления разных групп мышц, эффективности при разных путях введения, побочных эффектов, по наличию антагонистов и др. По химическому строению они делятся на: - бис-четвертичные аммониевые соединения (d-тубокурарин-хлорид, диплацин, парамион, дитилин, декаметоний и др.); - третичные амины (алкалоиды эритрины - b-эритроидин, дигидро-Ь-эритроидин; алкалоиды живокости - кондельфин, мелликтин).

Новые миорелаксанты и проблемы использования их в ветеринарии

Использование миорелаксантов в сочетании с наркотическими веществами и местноанестезирующими свойствами приобретает большое значение при обездвиживании диких и домашних животных. Иммобилизация животных фармакологическими средствами основана на потере ими двигательной активности на определенный промежуток времени, что позволяет безопасно работать и фиксировать животных при оказании им какой-либо помощи, в том числе и лечебной (Koelle G.B., 1971; Магда И.И., 1974; Харкевич Д.А., 1983).

В качестве альтернативных средств для временного обездвиживания животных в разные годы и с разными результатами использовали D-тубокурарин, диметилтубокурарин, три-(диэтиламиноэтокси)-бензил-триэтил йодид (флакседил), никотин-салицилат и сукцинилхолин-хлорид (Jalanka Н., 1991). Терапевтический индекс при применении указанных средств был мал, часто случались вдыхание (аспирация) содержимого желудка и остановка дыхания, уровень смертности был очень высоким. Различие результатов по оценкам разных авторов отчасти относили на счет неточного дозирования и несовершенства техники введения с использованием металлических или пластиковых дротиков, снаряженных препаратом, чаще растворенным в растворе глюкозы (Ворнер Д., 1998).

Впоследствии были найдены антагонисты антидеполяризующих миорелаксантов, в т.ч. обратимые ингибиторы холинэстераз: прозерин (неостигмин), галантамин и тензилон, Они позволили несколько снизить риск передозировки препаратов указанной группы. Однако, по данным Бутаева Б.М. (1964) недеполяризующие миорелаксанты обладают большой способностью кумулировать, что проявляется при их повторном введении. Поэтому одним из важных требований, предъявляемых к миорелаксантам нового поколения, является отсутствие кумулятивных свойств.

Важное место при оценке курареподобных средств занимают побочные эффекты. В принципе миорелаксанты должны обладать высокой избирательностью действия и не вызывать побочных эффектов. Но для деполяризующих миорелаксантов, в том числе, дитилина, как раз характерны неблагоприятные эффекты, обусловленные механизмом их действия (Smith7 S.E. 1976). Помимо избирательного влияния на нервно-мышечную передачу, курареподобные средства могут вызвать побочные эффекты, связанные в высвобождением гистамина, угнетением вегетативных ганглиев, возбуждением или блокированием М-холинорецепторов.

В отдельных случаях, особенно в условиях шока от испуга при использовании миорелаксантов (Макушкин А.К. и соавт., 1982), это приобретает жизненно важный характер и сопровождается снижением температуры тела и артериального давления, вызванного ганглиоблокирующим или антихолинэстеразным свойствами препаратов; острым бронхоспазмом; усилением секреции желудочного сока; повышением моторики кишечника; появлением отечности и зуда кожи; увеличением лимфотока (Харкевич Д.А., 1969; Colonhoun D., 1986). В конечном итоге шок может закончиться летальным исходом уже после прекращения действия миорелаксанта.

По общепринятому мнению, антагонисты деполяризующих миорелаксантов до сих пор не найдены, хотя Thomas W.D. еще в 1961 упоминал в качестве их антагониста 1-амфетамин (фенамин). Эти исследования почему-то не получили дальнейшего развития или не подтвердились. Возможно, что препятствием для подробного изучения и внедрения в практику этого потенциального антидота явилось то, что, наряду с ЛСД, 1-амфетамин был отнесен к числу «наркотиков», как вещество, вызывающее наркотическую зависимость.

В настоящее время проблема внедрения в практику временного обездвиживания животных новых миорелаксантов остается актуальной. По данным специалистов Госохотконтроля, риск случайной гибели животных при применении известных средств обездвиживания, в т.ч. дитилина, порой достигает 70% (Царев С.А., 2002). Это указывает на необходимость увеличения широты терапевтического (миорелаксирующего) действия и разработки надежных антагонистов. Одним из недостатков препаратов, используемых в практике временного обездвиживания, является их относительно невысокая растворимость и связанная с этим необходимость при работе с крупными животными введения больших количеств их растворов, а также трудности использования их в условиях низких температур, поскольку при этом они выпадают в осадок (Сергеев П.В., 1993).

В последние годы появлялись публикации о новых миорелаксантах -пирокурине и амидокурине, которые имеют значительно большую «широту миорелаксирующего действия» по сравнению с известными и применявшимися ранее и теперь d-тубокурарином, дитилином и их аналогами (Харкевич Д.А., 1989; Чижов М.М., 1992). Однако пока информация о них скудная и недостаточная для суждения об их перспективности и доступности.

Вместе с тем, наряду с миорелаксантами в последние годы в ветеринарной практике временного обездвиживания животных успешно проявили себя некоторые психотропные препараты. В качестве анестетиков -опиоиды (диэтилтиамбутен, фентанил и эторфин), циклогексамины, фенотиазины и ксилазин, в сочетании с миорелаксантами или без них, вошли в ряд широко известных в нашей стране и за рубежом рецептур для временного обездвиживания и наркотизации животных (Jalanka Н.Н., 1991).

Определение кумулятивных свойств адилинсульфама

Под кумуляцией принято понимать усиление действия вещества при повторном его воздействии. Определение кумулятивного эффекта необходимо для правильного выбора коэффициента запаса, поскольку процессы кумуляции лежат в основе хронического отравления (Саноцкий И.В. 1970).

При определении кумулятивных свойств по формуле Кагана Ю.С. и Станкевича В.В. (1964) крысам внутримышечно вводили адилинсульфам, начиная с его оптимальной миорелаксирующей дозы - 3,25 мг/кг с постепенным увеличением ее на 7% в каждой последующей группе животных с интервалом 1 сут. Результаты опытов представлены в таблице 5. Таблица 5 - Изменение чувствительности крыс обоего пола массой 120-180 г при повторном ежесуточном в/м введении адилинсульфама (п=4)

Согласно полученным результатам при повторном ежесуточном введении адилинсульфама повышения токсичности не наблюдалось, более того были хорошо заметны признаки толерантности.В конце опыта животные погибали от повышенных смертельных доз препарата. ЛД5о в данном опыте была рассчитана пробит анализом (Муканов Р.А., 2005) и она составила 23,1 мг/кг.Количественную оценку кумулятивного эффекта, коэффициент кумуляции вычисляли по формуле Кагана Ю.С. и Станкевича В.В.(1964).

По результатам исследований коэффициент кумуляции составил 6,6. Это указывает на то, что препарат, во-первых, быстро метаболизируется и не проявляет функциональной кумуляции, и во-вторых, стимулирует системы, которые его метаболизируют. 4.3 Влияние адилинсульфама на морфологические и биохимические показатели крови

Оценка влияния препарата, предполагаемого для использования в качестве лекарственного средства, на гематологические показатели является одним из стандартных методов определения его безвредности. Данное исследование проведено на 10 белых крысах массой 180-200г. Крысам вводили внутримышечно однократно адилинсульфам в дозе ЛД5о- Через 1; 3; 7 и 24 часа после введения у 6 выживших животных шприцем из сердца отбирали кровь для исследования. Полученные результаты приведены в таблице 6.

Согласно полученным данным, наиболее существенные отклонения в картине крови наблюдаются к 3-му часу. Количество гемоглобина снижается на 12,3%, общего белка на 4% и у-глобулинов на 13,2% с одновременным повышением количества а-глобулинов на 15,9% . Однако уже к 7 часу можно отметить тенденцию к нормализации показателей, и к 24 часам - полное возвращение их к исходным значениям. Следовательно, отмеченные изменения носили временный, преходящий характер, и по-видимому, они указывают на обратимый процесс адаптации, связанный с состоянием иммобилизации у животных и, возможно, отчасти, с фушащональноРг гипоксией.

Для определения эмбриотоксического действия адилинсульфама использовали 36 беременных самок белых крыс весом 180-220г. На первом этапе исследований были подобраны 2 группы оплодотворенных самок по 12 голов в каждой. Крысам первой группы в течение всей беременности включали в рацион мясной фарш, в который заранее вносили субстанцию (порошок) адилинсульфама из расчета 40 мг/кг массы крысы. Данная доза превышает в 10 раз смертельную дозу препарата, равную 4 мг/кг при внутримышечном введении. Это превышение было сделано для определения коэффициента запаса уровня безопасности. Для сравнения второй группе опытных крыс вводили с кормом адилинсульфам 12 мг/кг в качестве альтернативной промежуточной дозы, также превышающей смертельную, но лишь в 3 раза. Крысы контрольной группы также в течение всего срока беременности получали тот же мясной фарш в равных количествах, но без добавления препарата.Для выявления возможного токсического действия препарата ежедневно проводили наблюдение за состоянием и поведением беременных самок и один раз в неделю проводили контрольное взвешивание.

Приведенные результаты показывают, что беременные крысы хорошо переносили введение с кормом исследуемого препарата, во всех группах он не оказывал отрицательного влияния на продолжительность беременности и массу тела (р 0,5).

Для учета последствий введения миорелаксанта и влияния его на эмбрионы на 21-й день беременности крыс декапитировали под легким эфирным наркозом, вскрывали брюшную полость и извлекали эмбрионы для проведения последующих исследований.

Далее в соответствии с принятой методикой подсчитывали число мест имплантаций, мест резорбций, количество живых и мертвых плодов и желтых тел в яичниках, показатели предимплантационной, постимплантационной гибели эмбрионов и общей эмбриональной смертности.

Анализ проведенных исследований показал, что введение адилинсульфама беременным животным в расчетной дозе 40 и 12 мг/кг ежедневно в течение 20 суток не оказывало отрицательного влияния на их клиническое состояние, но увеличивало показатели предимплантационной и, соответственно, общей смертности эмбрионов, хотя и статистически недостоверно (р 0,05). Значительные индивидуальные колебания показателей позволяют говорить лишь о выраженной тенденции. Кроме того, в 1-й группе животных - на уровне расчетной дозы 40 мг/кг при ежедневном скармливании ее с кормом беременным самкам крыс выявлены признаки эмбриотоксичности в виде снижения числа живых плодов по сравнению с контрольной группой, соответственно, 6,6 и 8,6 (р 0,05).

Далее для выявления тератогенных эффектов в соответствии с описанной в разделе 3 методикой с помощькГсерййньіх срезов гго"Методу-Вильсона и развития скелета по методу Даусона под бинокулярной лупой, изучали внутренние органы эмбрионов, полученных от беременных самок крыс, получавших с фаршем в течение всего срока беременности заведомо высокие дозы адилинсульфама 40 и 12 мг/кг. При выявлении тератогенности внешний осмотр эмбрионов не выявил аномалий глаз, лицевого черепа, конечностей, хвоста и передней брюшной стенки. В результате сравнения срезов плодов контрольной и 2-х опытных групп также не было обнаружено существенных аномалий внутренних органов. Отсюда можно сделать вывод, что порошок адилинсульфам при включении его в рацион беременных крыс с мясным фаршем из расчета 40 и 12 мг/кг не вызывал тератогенного эффекта.

В результате проведенного исследования эмбрионов было установлено, что топография костных и хрящевых закладок в скелете не нарушается. Количество позвонков шейных, спинных, поясничных в контрольной и опытной группе соответствует норме. У плодов обеих групп нарушений в оссификации костей черепа, плечевого, тазового пояса и конечностей, а также количественных отклонений в строении скелета не установлено.

Испытание препарата адилинсульфама на стерильность и пирогенность

Далее препарахдроверяли на стерильность согласно принятому методу (Государственная фармакопея XI). В отдельных емкостях были приготовлены водные растворы из субстанции препарата. Из них отбирали раствор, в количестве, соответствующем 200 мг препарата в колбу со стерильной водой 100 мл. Приготовленные растворы фильтровали и помещали в колбы с тиогликолевой средой и средой Сабуро. Посевы просматривали в рассеянном свете ежедневно и до окончания принятого периода инкубации: для среды Сабуро - 72 часа, для тиогликолевой среды - 48 часов. При осмотре емкостей с питательными средами, подвергнутыми воздействию препарата в указанной концентрации, появления мутности, пленки, осадка и других макроскопических изменений, свидетельствующих о росте микроорганизмов, не обнаружено. Следовательно, адилинсульфам удовлетворяет предъявленным требованиям на стерильность.

При оценке качества лекарственных средств важная роль отводится результатам испытания на пирогенность - один из основных показателей безопасности лекарств. Испытанию на пирогенность подлежат все лекарственные средства для парентерального применения при объеме одноразовой дозы 10 мл и больше. Применение деполяризующих миорелаксантов обычно бывает значительно ниже указанного объема, как правило, не более 2-3 мл даже для крупных животных. Это обусловлено высокой эффективностью и хорошей растворимостью препаратов.

Введение пирогенных растворов особенно опасно, так как пирогенная реакция зависит от количества поступившего в организм препарата. Известно, что стерилизация освобождает раствор от наличия жизнеспособных организмов. Однако в растворах остаются мертвые клетки и продукты их распада, обладающие пирогенными свойствами благодаря присутствующим в клеточной стенке бактерий липополисахаридам.

Целью этого опыта являлось определение возможной пирогенной активности препарата адилинсульфама. В соответствии с принятой методикой испытание проводили на здоровых кроликах обоего пола весом 2-2,3 кг, не альбиносах, содержащихся на полноценном рационе. Препарат вводили внутримышечно в миорелаксирующей дозе - 3,1 мг/кг, с последующей термометрией животных на протяжении 3-х часов. Каждый кролик находился в отдельной клетке в помещении с постоянной температурой. Подопытные кролики не должны терять в массе тела, в течение 3-х суток перед испытанием. У каждого измеряли температуру до дачи корма. Термометр вводили в прямую кишку на глубину 7 см. Исходная температура подопытных кроликов должна быть в пределах 38,5-39,5С.

Испытуемый препарат проверяли на 3-х кроликах самцах. Перед введением раствора у каждого дважды измеряли температуру с интервалом 30 минут. Различия в показаниях не превышали 0,2С. Раствор миорелаксанта ввели через 15 минут после последнего измерения температуры.

Препарат считается не пирогенным, если сумма повышений температур у 3-х кроликов была менее или равна 1,4С. После введения адилинсульфама общее состояние кроликов было удовлетворительным без явлений токсикоза. Животные через 10 минут приняли боковое положение, в котором находились в течение 20 минут. Результаты термометрии показали, что при внутримышечном введении адилинсульфама сумма повышения температур была меньше 1,4С, что свидетельствует об отсутствии у адилинсульфама пирогенных свойств.

Многие лекарственные вещества в обычных терапевтических дозах и даже минимальных количествах вызывают сенсибилизацию организма (Адо А.Д., 1957; Алексеева О.Г., 1974). Аллергические свойства препарата изучали на кроликах массой 2,5-Зкг. Действие адилинсульфама на слизистую оболочку глаз определяли путем однократного нанесения 2 капель 50% раствора на конъюнктиву глаза кроликов. При нанесении раствора оттягивали внутренний угол конъюнктивального мешка, затем в течение 1 минуты прижимали слезно-носовой канал. Животным контрольной группы на конъюнктиву правого глаза закапывали 2 капли дистиллированной воды комнатной температуры. Состояние животных оценивали через 5, 30 и 60 мин и через 24 ч после нанесения препарата, при этом обращали внимания на состояние оболочки глаза, отечность, гиперемию, слезоточивость. Поведение животного было спокойным, дыхание немного учащено, в течение 30 минут наблюдалось покраснение глаза без отека. Через 1 час состояние животных и оболочка их глаз нормализовались. Через 24 часа признаки раздражения или воспаления отсутствовали. Через 2 сутки на конъюнктиву глаз тех же кроликов был повторно нанесен раствор препарата той же 50%-ной концентрации. Наблюдаемый эффект через 1 час и на следующий день был идентичен тому, который наблюдался при первичном нанесении, и поэтому был сделан вывод, что препарат не вызывает аллергической реакции.

Эвтаназия

Собаке - собачья смерть?

Курареподобные миорелаксанты

Уважаемые коллеги!

Дискуссия об эвтаназии ведётся уже не один год. Дискуссия, с моей точки зрения, бессмысленная. Механизм действия препаратов известен давно, и глупо это обсуждать. Люди, ратующие за применение курареподобных препаратов для эвтаназии, имеют слабое представление о таких понятиях, как сострадание, гуманность, врачебная этика. Я думаю, что ларчик открывается просто. Необходим рынок сбыта для этих препаратов, и любыми путями их надо протолкнуть. Но где начинаются деньги, - кончается гуманность. Нам важно ваше мнение, и поэтому мы просим высказаться; и тем, кто считает себя врачом, подписаться под письмом с указанием своих данных.

С уважением,
Президент Ассоциации практикующих ветеринарных врачей,
Заслуженный ветеринарный врач РФ,
Кандидат ветеринарных наук
Середа С.В.

ОТКРЫТОЕ ПИСЬМО ВЕТЕРИНАРНОМУ СООБЩЕСТВУ

СОБАКЕ - СОБАЧЬЯ СМЕРТЬ?

ЭВТАНАЗИЯ В ПЕРЕВОДЕ ОБОЗНАЧАЕТ СЧАСЛИВАЯ СМЕРТЬ, ИЗБАВЛЕНИЕ ОТ СТРАДАНИЙ, И ЕСЛИ ПРОВЕДЕНИЕ ЭВТАНАЗИИ НЕИЗБЕЖНО, ТО ВЫПОЛНЯТЬ ЕЕ ИМЕЕТ ПРАВО ЛИШЬ СОСТРАДАЮЩИЙ СВОЕМУ ПАЦИЕНТУ ВЕТЕРИНАРНЫЙ ВРАЧ, ОПЫТ И ЗНАНИЕ КОТОРОГО ПОЗВОЛЯТ ПРЕДОТВРАТИТЬ ПРЕДСМЕРТНЫЕ МУЧЕНИЯ ЖИВОТНОГО.

С правившись с захлестнувшим нас негодованием после прочтения , авторами которой являются несколько докторов наук мы попытались выделить из клубка переплетающихся и не очень относящихся друг к другу фактов основные выдвигаемые ими тезисы для того, чтобы без лишних эмоций прокомментировать те из них, согласиться с которыми нам не позволяет ни гражданская совесть, ни выбранная профессия.

Итак, лейтмотивом этой статьи является осуждение авторами находящегося в разработке федерального закона "о защите животных от жестокого обращения". Этот закон запрещает использовать курареподобные препараты для эвтаназии, равно как и другие жестокие методы прерывания жизни животного, такие как утопление, перегрев или удар током.

Какие же аргументы приводят в своей статье разработчики нового курареподобного препарата Адилин?

1. Смерть от курареподобных препаратов вовсе не мучительна, а наоборот.
2. У России свой путь и Европейские конвенции для нее не указ.
3. Барбитураты недоступны простому врачу, а недавно шли судебные разбирательства по кетамину.
4. С эпизоотией бешенства надо бороться.
5. Программа стерилизации бездомных животных малоэффективна для контроля численности беспризорных животных.

Итак, авторы утверждают, что "в аспекте использования Дитилина, Адилин-супер и их аналога БР-2 для эвтаназии, следует полагать, что эти препараты на сегодняшний день являются если не идеальными, то одними из наиболее ГУМАННЫХ и технологичных средств для этой цели".

КРАТКАЯ СПРАВКА . Яд кураре использовался аборигенными племенами для охоты. "Ранение отравленными стрелами приводит к обездвиживанию животного или смерти в результате асфиксии". - Машковский, справочник лекарственных средств 2007 г.

КУРАРЕПОДОБНЫЕ СРЕДСТВА - лекарственные средства, вызывающие релаксацию скелетных мышц в результате блокады нейромышечной передачи. Относятся к миорелаксантам периферического действия, т.к. взаимодействуют с н-холинорецепторами постсинаптической мембраны нервно-мышечных синапсов.
По механизму действия различают недеполяризующие (панкуроний, пипекуроний), деполяризующие (дитилин) и курареподобные средства смешанного действия.

Курареподобные средства вызывают релаксацию скелетных мышц в определенной последовательности: в первую очередь мимических и жевательных мышц, мышц шеи, затем мышц конечностей и туловища. Более устойчивы к действию курареподобных средств дыхательные мышцы, в том числе и диафрагма. Именно эта терапевтическая широта позволяет использовать курареподобные средства в медицине для релаксации скелетных мышц во время хирургических вмешательств, а в ветеринарии для временного обездвиживания диких и агрессивных животных с целью проведения каких либо манипуляций (вакцинации, транспортировка и др.). Смеем заметить, что Министерством Сельского Хозяйства и Департаментом Ветеринарии в 1998году утверждено наставление по применению дитилина, в качестве средства для временного обездвиживания с целью обеспечению безопасного доступа к животному.

О днако по непонятным нам причинам, группа образованных ветеринарных специалистов, обладающих высокими учеными степенями, с завидным упорством настаивают на необходимости проводить эвтаназию с помощью курареподобных препаратов, что само по себе уже является утопией, так как эвтаназия (счастливая смерть) не может наступить в результате асфиксии. Смерть от удушья является мучительной, животное, лишенное возможности дышать, вследствие паралича дыхательной мускулатуры, умирает в жестоких страданиях, охваченное ужасом до тех пор, пока не произойдет потери сознания вследствие гипоксии.

Особенно любопытны приведенные ими доводы о том, что "по нашим экспериментальным данным, при введении животным смертельной дозы миорелаксанта деполяризующего действия, к которым относится дитилин и Адилин-супер, биоэлектрическая активность мозга (на энцефалограмме) угасает раньше, чем сердечные сокращения (на электрокардиограмме). То есть, сам факт гибели животного определенно наступает в отсутствие какой-либо чувствительности и в бессознательном состоянии". Позволим себе не согласиться с научными выводами наших коллег: полученные в ими В ОСТРОМ ОПЫТЕ данные позволяют лишь сделать вывод о том, что смерть наступила не от остановки сердцебиения, а от остановки дыхания. Что же пережило животное до тех пор, пока биоэлектрическая активность мозга не угасла, представить себе, к счастью, нам с вами не дано. Напомним лишь, что в головном мозге нет н-холинорецепторов постсинаптической мембраны нервно-мышечных синапсов, а это значит, что как бы не ссылались авторы на значительное превышение летальной дозы и, как следствие, быструю смерть мозга, иначе чем через паралич дыхательных мышц и удушье она (смерть мозга) не наступит. Что удивительно, именно это авторы сами же и подтверждают, говоря, что "под влиянием миорелаксанта в крови накапливается углекислота". Довольно цинична в данном контексте ссылка о том, что накопившаяся углекислота обладает наркотизирующим действием. Кстати, есть и невольные свидетели вышесказанного: многочисленные описанные в медицине ощущения пациентов в случае передозировки миорелаксанта или повышенной к нему чувствительности. Все они сводятся к неописуемому ужасу из-за удушья и невозможности вдохнуть. Именно по этому во всем цивилизованном мире применение курареподобных препаратов для эвтаназии животных запрещено, и относится к разряду жестокого обращения с животными (например, законодательством Украины за нарушение запрета предусмотрено уголовное наказание в виде ареста на срок до 6 месяцев).

Но по мнению некоторых ученых мужей у России собственный путь развития, Европейская конвенция ей не указ, и поэтому ОСТРЫЕ (приводящие к гибели опытных животных) опыты будут продолжаться до тех пор, пока утопические попытки доказать всему миру, что смерть от удушья вовсе не мучительна, не будут резко осуждены обществом и не прекратятся.

Теперь к следующему вопросу. Одним из наиболее гуманных методов эвтаназии считается использование барбитуратов, так как они вызывают сначала безболезненную потерю сознания, а уж потом остановку дыхания и смерть. Трогательная забота производителей адилина о врачах, которых недавно сажали за кетамин, совершенно безосновательна - барбитураты официально разрешены для применения в ветеринарии. Другое дело, что они подлежат строгой отчетности, и не каждый может их получить и использовать (необходимо выполнять условия хранения и пр.), но это как раз и правильно - смертоносный препарат не должен попадать в руки случайных людей, имеющих ветеринарное образование. Уж совсем бессовестно оправдывать мучения животных тем, что миорелаксанты не надо учитывать с такой строгостью - давайте тогда просто палкой по голове убивать, и дешево, и учета не требуется. Вот только что тогда станет с теми, чей выбор профессии благороден и полон сострадания? Кто-то уйдет с первого курса ветеринарного вуза, а кто-то перестанет чувствовать чужую боль. Наверно первое лучше, чем второе, ведь еще Пифагор сказал: "Тот легко убьет человека, кто спокойно убивает животное". Что касается вопросов эпизоотии бешенства и эффективности программ стерилизации бездомных животных, - не совсем понятно (точнее непонятно совсем), каким образом эти проблемы связаны с садистской эвтаназией, в пользе которой убеждают нас авторы злополучной статьи??

В заключении хочется сказать, что очень обидно, когда интеллектуальная мощь нации тратится на то, чтобы доказать, что смерть от удушья не мучительна - ведь в нашем общем деле, ветеринарной медицине еще столько очень важных, несделанных открытий.

WSAVA (Всемирная ассоциация ветеринарии мелких домашних животных, включающая в себя ассоциации более восьмидесяти стран) осуждает действия ветеринарных врачей, которые используют для эвтаназии курареподобные вещества.

Ассоциация практикующих ветеринарных врачей присоединяется к WSAVA и намерена бороться с этим в соответствии с действующим законодательством.

P.S. 14 декабря 2007 г. Россельхознадзором была утверждена Инструкция по применению препарата Киллин для бескровного умерщвления животных. Действующим веществом является изоциурония бромид – КУРАРЕПОДОБНОЕ СРЕДСТВО, НЕДЕПОЛЯРИЗУЮЩИЙ МИОРЕЛАКСАНТ. Продолжение следует…

Д.В. Андреева, старший ветврач КСК «Битца», к.в.н.
Т.В. Бардюкова, зам. главного ветврача ВК «Центр», Москва, к.б.н.
Д.Б. Васильев, ведущий герпетолог Московского зоопарка, д.б.н.
С.Я. Герасина, старший ветврач Цирка Никулина
Д.В. Гончаров, к.в.н.
В.И. Гореликов, к.в.н., Украина
А.М. Ермаков, президент Северо-Кавказской ассоциации практикующих ветеринарных врачей, к.в.н.
Н.М. Зуева, президент ветеринарного общества визуальной диагностики, к.б.н.
Н.Л. Карпецкая, к.в.н.
Е.М. Козлов, президент Новосибирской гильдии практикующих ветеринарных врачей, к.в.н.
Н.Г. Козловская, президент ветеринарного анестезиологического общества, к.б.н.
А.Г. Комолов, президент кардиологического ветеринарного общества
В.С. Кузнецов, президент Уральской ассоциации практикующих ветеринарных врачей, к.в.н.
С.Л. Мендоса-Истратов, директор сети клиник «Белый Клык»
В.Н. Митин, Академик РАЕН, д.м.н., д.б.н., к.в.н.
Е.И. Назаренко, секретарь АПВВ
М.А. Пака, президент калининградской ассоциации практикующих врачей ветеринарной медицины
В.Я. Подолянов, президент Оренбургской Ассоциации практикующих ветеринарных врачей, к.м.н.
Е.В. Польшкова, главный ветврач клиники «МиВ», Москва к.в.н.
Н.С. Пустовит, к.б.н.
Р.Х. Равилов, президент Ассоциации практикующих ветеринарных врачей Татарстана, Профессор, д.в.н.
С.В. Середа, президент АПВВ, заслуженный ветврач РФ, к.в.н.
Н.А. Слесаренко, заслуженный деятель науки РФ, Академик РАЕН, д.б.н., профессор
О.И. Смолянко, к.б.н.
Л.Ю. Сычкова, директор клиники «МиВ», Москва
В.В. Тиханин, президент Северо-Западной ветеринарной ассоциации, к.в.н.
А.В. Ткачёв-Кузьмин, президент Российской ветеринарной ассоциации, к.в.н.
С.А. Хижняк, сопредседатель Гильдии практикующих ветеринарных врачей г. Воронежа, к.в.н.

Оригинал обращения на сайта АППВ:

Мышечные релаксанты (Курареподобные препараты).
В зависимости от особенностей механизма их действия курареподоб-ные мышечные релаксанты делят на две основные группы:
А. Недеполяризующие (антидеполяризующие) миорелаксанты (па-хикураре). Парализуют нервно-мышечную передачу вследствие снижения чувствительности Н-холинорецепторов к ацетилхолину и тем самым исключают возможность деполяризации концевой пластинки и возбуждения мышечного волокна. В результате мышечный тонус понижается и наступает паралич всех скелетных мышц.
Родоначальником этой группы является тубокурарин.
Фармакологическими антагонистами этой группы служат антихолинэстеразные вещества. Угнетая активность холинэстеразы, они приводят к накоплению в области синапсов ацетилхолина, который с повышением концентрации ослабляет взаимодействие курареподобных веществ с Н-холинорецепторами и восстанавливает нервно-мышечную проводимость.
Диплацин Diplacinum.

Форма выпуска: 2 % раствор в ампулах по 5 мл.
Сильно понижает тонус скелетной мускулатуры, угнетает двигатель-ную активность, а с повышением доз наступает паралич мускулатуры и полное обездвиживание (через 7 - 10 минут и продолжается 35 - 50 минут).
Выключая функции дыхательной мускулатуры, ослабляет дыхание и выключает произвольное дыхание.
Применяют в хирургической практике для более полного расслабления мускулатуры при операциях на органах брюшной и в грудной полостей, для обездвиживания диких животных при ловле и фиксации их.
Противоядие - прозерин.
Дозы (на 1 кг веса): в/в - крупному рогатому скоту 2,5 мг; в/м - собакам 2,5 - 3 мг.
Тубокурарин хлорид Tubocurarine chloride.
Белый кристаллический порошок, легко растворимый в воде.
Форма выпуска: 1 % раствор в ампулах по 1,5 мл (15 мг в 1 мл).
Расслабляет мышцы (мышцы пальцев рук глаз ног шеи спи-ны, потом межреберные мышцы и диафрагма).
Может вызвать остановку дыхания, снижение артериального давления. Способствует высвобождению из тканей гистамина и иногда мо-жет вызывать спазм мышц бронхов.
Применяют, главным образом, в анестезиологии в качестве миорелаксанта, вызывающего расслабление мускулатуры во время операции (больной должен быть переведен на искусственную вентиляцию легких.
К данной группе также относят: пипекуроний бромид, атракурий, квалидил, теркуроний, мелликтин и др.

Б. Деполяризующие препараты (лептокураре) вызывают мышечное расслобление за счет холиномиметического действия, связанного с относительно стойкой деполяризацией Н-холинорецепторов концевой пластинки, т. е. действует подобно тому, как действуют избыточные количества ацетилхолина, что также нарушает проведение возбуждения с двигательных нервов на скелетные мышцы.
Избыток ацетилхолина в нервно-мышечном синапсе вызывает устой-чивую электроотрицательность синаптических зон, что вначале вызывает фибриллярное подергивание мышц, а затем двигательная пластинка парализуется и наступает мышечное расслабление - миорелаксанты двухфазного действия.
Дитилин Dithylinum.
Белый кристаллический порошок, хорошо растворимый в воде. Синтетический препарат.
Форма выпуска: 2 % раствор в ампулах по 5 или 10 мл. Список А.
Эффект обездвиживания наступает после внутривенного введения че-рез 1 - 2 минуты и продолжается 10 - 30 минут.
Действует непродолжительно, т. к. в организме разрушается холинэ-стеразой на холин и янтарную кислоту.
От больших доз может произойти остановка дыхания.
Применяют при хирургических вмешательствах, вправлении вывихов, для предубойного обездвиживания животных, для адинамии диких животных при ловле и фиксации, при работе с зоопарковыми животными.
Дозы в/м (на 1 кг веса животного): крупному рогатому скоту 0,1 мг; лошадям 1 мг; свиньям 0,8 мг; овцам 0,6 мг; собакам 0,25 мг; морским котикам 1 - 1,2 мг; медведям 0,3 - 0,4 мг; волкам 0,1 мг; шакалам, лисицам 0,075 мг.
Ветеринар на дом Минск. ветеринар Минск.

Принцип многокомпонентности (сбалансированности) общей анестезии предполагает управление каждой её составляющей раздельно. Именно такой вариант анестезии в настоящее время считается наиболее эффективным и универсальным. При сбалансированной анестезии необходимо сочетание анальгезии, медикаментозного сна, мышечной релаксации и блокады автономных рефлексов. Необходимые эффекты могут быть достигнуты как применением средств, влияющих на два или три компонента анестезии (например, ингаляционных анестетиков, способных обеспечить также и определенную степень миорелаксации), так и работой с избирательно действующими препаратами, что обеспечивает более направленный контроль отдельных процессов (компонентов анестезии). Принцип сбалансированной анестезии предполагает создание мышечной релаксации введением миорелаксантов – препаратов, блокирующих проведение электрических импульсов на уровне нейромышечных синапсов, что останавливает сократительную работу мышечных волокон поперечнополосатой мускулатуры. Миорелаксанты представлены разными по структуре и фармакологическим свойствам препаратами с различными механизмами и продолжительностью действия

История миорелаксантов

По праву одним из первых миорелаксантов можно считать экстракт «кураре», из растений родов Strychnos Toxifera, Chondrodendron и др. (Южная Америка).

История открытия и применения кураре долгая и увлекательная. Первые сведения о кураре проникли в Европу более 400 лет назад, после возвращения экспедиции Колумба из Америки. В течение многих веков индейцы, обитающие по берегам Амазонки и Ориноко, применяли его для охоты - раненые животные погибали от паралича. Изготовление кураре было покрыто тайной, которой владели лишь колдуны.

В 1617 году английский путешественник и писатель Уолтер Райли отправился путешествовать в оринокские джунгли, находящиеся в северной части Амазонки, сопровождаемый переводчиком и местными индейцами. Райли был крайне заинтересован тем фактом, что подстреленные ими животные умирали от малейших ранений, наносимых стрелами туземцев. Когда он попросил объяснить, в чем же загадка, те ответили, что наконечники пропитаны жидкостью, называемой туземцами "кураре", что в дословном переводе означало "жидкость, которая быстро убивает птиц". Уолтер решил проверить действие яда на себе, сделав небольшой надрез и капнув всего две капли. Их хватило, чтобы он потерял сознание и после долго приходил в себя.

После работ путешественника и естествоиспытателя фон Гумбольдта, проведенных в 1805 г., начались поиски растений - источников кураре. Оказалось, что кураре из восточных областей Амазонки содержится в растениях рода стрихнос (Strychnos).

Именно с помощью кураре Клод Бернар впервые показал, что точкой приложения фармакологических веществ может быть область соединения нерва с мышцей (Bernard, 1856). В клинике же кураре, видимо, впервые применил Уэст в 1932 г.: он использовал высокоочищенные препараты этого вещества у больных со столбняком и спастическими состояниями.

В 1935 г. Кинг (King) выделил из кураре его основной естественный алкалоид - тубокурарин. Впервые мышечный релаксант тубокурарин (интокострин) был использован в клинике 23 января 1942 г. в Монреальском Гомеопатическом госпитале доктором Гарольдом Гриффитом (Гарольд Гриффит (1894-1985).Президент канадской ассоциации анестезиологов (с 1943))и его помощником Энидом Джонсоном при операции аппендэктомия под циклопропановым наркозом 20-летнему водопроводчику. Это стало вехой в развитии анестезиологии. До этого при общей анестезии применялись только ингаляционные анестетики (закись азота, эфир, циклопропан и хлороформ), что затрудняло выполнение некоторых оперативных вмешательств из-за недостаточной миорелаксации. Для достижения значительного расслабления мышц приходилось углублять анестезию, что способствовало частому развитию сердечно-сосудистых и респираторных осложнений. Единственной альтернативой в данном случае была местная анестезия. Использование мышечных релаксантов значительно облегчало интубацию трахеи и позволяло проводить наркоз на поверхностном и более безопасном уровне.

В 1949 г. Бове и его сотрудники опубликовали данные о нескольких синтетических курареподобных веществах, в том числе - галламине (Bovet, 1972). Ранние исследования зависимости активности таких веществ от их структуры привели к разработке полиметилен-ди-триметиламмониевых соединений - так называемых метониевых производных(Barlow and Ing, 1948; Patonand Zaimis, 1952). Самым мощным из них как миорелаксант оказался декаметоний, содержащий в полиметиленовой цепи 10 атомов углерода (рис. 9.2). Гексаметоний, содержащий 6 таких атомов, на нервно-мышечное проведение не действовал, но зато оказался мощным ганглиоблокатором.

В 1949 г. было описано курареподобное действие суксаметония хлорида, и вскоре его стали применять для кратковременной миорелаксации. Так, в 1952 г. Theselff и Folders с сотрудниками внедрили в клиническую практику сукцинилхолин, который явился революционным препаратом в анестезиологии, обеспечивая более выраженный нейромышечный блок, очень быстрое начало действия и его короткую длительность, и, соответственно, значительно облегчая интубацию трахеи. В следующее десятилетие в практической анестезиологии появились синтетические и полусинтетические препараты, являвшиеся альтернативой d-тубокурарину: галламин, диметилтубокурарин, алкуроний. В 1967 г. Baird и Reid первыми сообщили о клиническом применении синтетического аминостероида панкурония. В начале 80-х годов появились два новых миорелаксанта средней длительности действия – атракурий и векуроний. В начале 1990 г. в США начали применяться два миорелаксанта длительного действия, практически не обладающие побочными эффектами: пипекуроний и доксакурий. Кроме того, в арсенале анестезиолога появился недеполяризующий миорелаксант короткого действия, который гидролизируются холинэстеразой плазмы (мивакурий) и препарат средней длительности действия – рокуроний.

Механизм нейро-мышечной передачи.

Ацетилхолин (АХ), являющийся передатчиком (нейротрансмиттером) в нервно-мышечном сочленении, синтезируется из холина и ацетил-кофермента А с участием холинацетилтрансферазы и хранится в везикулах нервного окончания. Нервный импульс (потенциал действия) вызывает деполяризацию нервного окончания, что сопровождается высвобождением АХ. Деполяризация и высвобождение АХ происходят после вхождения в клетку нервного окончания ионов кальция. Поступления потенциала действия вызывает перемещение везикул в активные зоны, расположенные в аксональной мембране. В этих зонах везикулы сливаются с мембраной, высвобождая АХ в синаптическую щель.

В каждом нервном окончании имеется около тысячи активных точек, и поступление каждого потенциала действия приводит к опорожнению 200-300 везикул. Кроме того, небольшие кванты АХ, предположительно эквивалентные содержимому одной везикулы, вскрываются в синаптическую щель спонтанно, вызывая мини-потенциалы концевой пластинки (МПКП) на постсинаптической мембране, однако этого недостаточно для генерации мышечного ответа на данный стимул. Точки активного выброса АХ располагаются точно напротив АХ-рецепторов на складках постсинаптической мембраны, лежащей на поверхности мышцы.

Синаптическая щель (пространство между нервным окончанием и мышечной мембраной) имеет ширину всего 60 нм . В ней содержится ферментацетилхолинэстераза, разрушающая АХ после выполнения им своей роли – передачи нервного импульса на мышцу. Этот фермент (и в более высоких концентрациях) присутствует и в складках постсинаптической мембраны. Холин, высвобождающийся при разрушении АХ, проходит через пресинаптическую мембрану назад для повторного использования в синтезе АХ. На постсинаптической мембране в области синаптических складок находятся никотиновые АХ-рецепторы, которые организованы в отдельные группы (кластеры).

Каждый кластер (около 0,1 мкм в диаметре) содержит несколько сотен рецепторов. Каждый рецептор состоит из пяти субъединиц, две из которых идентичны (α -субъединицы с мол. массой 40 000 дальтон). Остальные три имеют несколько больший размер и обозначены как β-, δ- и ε - субъединицы. В мышцах плода вместо ε – субъединицы находится γ -субъединица. Каждая субъединица представляет собой гликолизированный протеин (цепочку аминокислот), закодированную тем или иным геном. Рецепторы представлены в виде своеобразных цилиндров, пронизывающих мембрану и имеющих в центре канал – ионофор , который обычно закрыт. Каждая α -субъединица имеет на своей поверхности одну зону связывания АХ, которая также способна связываться и с нейромышечными блокаторами.

Для активации рецептора обе α -субъединицы должны быть заняты; это приводит к структурному изменению рецепторного комплекса, что вызывает открытие центрального канала (ионофора) между рецепторами на очень короткое время – около 1 мс . При открытии ионофора начинается перемещение катионов Na + , K + , Ca 2+ и Mg 2+ в соответствии с их концентрационными градиентами, т.е. калий и магний будут выходить из клетки, а кальций и натрий – входить в нее. Основное изменение заключается в притоке Na+ (ток в зоне концевой пластинки) с последующим оттоком K+. Такое перемещение ионов через большое количество рецепторных каналов в итоге понижает трансмембранный потенциал в области концевой пластинки, вызывая ее деполяризацию и генерируя мышечный потенциал действия, что приводит к мышечному сокращению.

В состоянии покоя трансмембранный потенциал составляет примерно -90 мВ (заряд с внутренней стороны мембраны отрицательный). В нормальных физиологических условиях деполяризация происходит при снижении трансмембранного потенциала до -50 мВ . Как только потенциал концевой пластинки достигает этого критического порога, запускается потенциал действия «все или ничего» , который проходит по всей сарколемме, активируя процесс мышечного сокращения посредством выброса Ca2+ из саркоплазматического ретикулума. Зона концевой пластинки деполяризуется всего лишь на несколько миллисекунд, после чего происходит ее реполяризация и она вновь готова к передаче следующего импульса.

Каждая молекула АХ участвует в открытии одного ионного канала только до момента ее быстрого разрушения ацетилхолинэстеразой; молекулы АХ не взаимодействуют с какими-либо другими рецепторами. Факторами определенной гарантии нейро-мышечной передачи являются большое количество высвобождающегося АХ и число свободных постсинаптических АХ-рецепторов. Надо сказать, что АХ выбрасывается значительно больше, нежели этого требуется для запуска потенциала действия в нейро-мышечном соединении.

АХ-рецепторы присутствуют и в пресинаптической мембране. Как предполагается, существует механизм положительной обратной связи для стимуляции высвобождения АХ. Некоторые из высвободившихся молекул АХ возвращаются к пресинаптической мембране, стимулируя указанные пресинаптические рецепторы и обусловливая перемещение везикул с АХ к активным зонам аксональной мембраны. У здоровых людей постсинаптические АХ-рецепторы находятся только в нейромышечном синапсе; при многих патологических состояниях, поражающих нейромышечные соединения, АХ-рецепторы развиваются и на прилегающей поверхности мышцы. Избыточный выброс калия из больных или отечных мышц при введении сукцинилхолина, по-видимому, явля-

ется результатом стимуляции этих внесинаптических рецепторов. Они появляются при многих состояниях, таких как полинейропатии, тяжелые ожоги, мышечная патология.

Классификация миорелаксантов

С практической точки зрения наиболее популярна классификация, предложенная Дж. Саваресом более 30 лет назад, основанная на механизме и продолжительности действия.

Деполяризующего

действия

Недеполяризующего действия

Ультракороткого

действия (< 7мин)

Короткого

действия (< 20 мин)

Средней продолжительности

действия (< 40 мин)

Длительного

действия(> 40 мин)

Суксаметоний(сукцинил

холин, дитилин,

листенон)

Мивакурия

хлорид*(мивакрон)

Атракурия безилат(тракриум)

Цисатракурия безилат(нимбекс)

Векурония бромид*(норкурон)

Рокурония бромид(эсмерон)

Панкурония

бромид * (павулон)

Пипекурония

бромид(ардуан, аперомид,

веро-пипекуроний)

В Российской Федерации зарегистрированы и доступны (по состоянию на 2013 г.) следующие миорелаксанты:

 Суксаметоний (Дитилин, Листенон)

 Атракурия безилат (Тракриум, Атракурия безилат, Атракуриум-Медарго, Риделат-С, Нотриксум)

 Цисатракурия безилат (Нимбекс)

 Рокурония бромид (Эсмерон, Рокуроний Каби)

 Пипекурония бромид (Ардуан, Веро-пипекуроний, Аперомид, Пипекурония бромид)

Показания к применению

Основными показаниями для применения миорелаксантов являются:

1. Облегчение условий для обеспечения проходимости дыхательных путей (ларингоскопии, интубации трахеи);

2. Облегчение условий для искусственной вентиляции лёгких (ИВЛ) во время общей анестезии (удержания дыхательной трубки в горле);

3. Обеспечение миорелаксации для выполнения оперативного вмешательства (создание оптимальных условий для работы хирурга: неподвижность пациента на операционном столе, создание достаточного внутрибрюшного объёма для выполнения лапароскопических операций и т.п.).

Расслабление мускулатуры позволяет хирургу выполнять операции любой продолжительности и локализации с максимальным удобством и минимальной травматичностью. Глубокая миорелаксация также необходима для выполнения ряда диагностических процедур: трахеобронхоскопии, лапароскопии и т.п., некоторых манипуляций на костях и связках.

С позиции анестезиолога, релаксация во время индукции анестезии необходима, прежде всего, для облегчения ларингоскопии и интубации трахеи. Правильное применение миорелаксантов существенно облегчает визуализацию гортани и интубацию трахеи и снижает риск повреждений структур гортани (голосовых связок). Мышечная релаксация также позволяет сокращать дозы анальгетиков, гипнотиков, внутривенных и ингаляционных анестетиков за счёт блокады автономных рефлексов. Вне процесса общей анестезии, к миорелаксантам приходится прибегать в отделениях интенсивной терапии при проведении ИВЛ (в норме - на фоне медикаментозной седации), купировании судорожных синдромов и т.д.

Ограничения применения

Миорелаксанты не должны применяться или применяться с осторожностью в следующих случаях:

1. При отсутствии условий обеспечения проходимости дыхательных путей и ИВЛ.

Применение миорелаксантов возможно при наличии подготовленного рабочего места анестезиолога. Анестезиолог должен иметь возможность обеспечить вентиляцию и оксигенацию после введения миорелаксанта (прогнозирование риска трудной вентиляции и интубации, планирование последовательности действий, специальное оборудование и устройства для обеспечения проходимости дыхательных путей).

2. У пациентов, находящихся в сознании.

Миорелаксанты не обладают анальгетическим и гипнотическим эффектом, поэтому во время миорелаксации необходимо контролировать адекватность обезболивания и подачу анестетика. Исключением является применение небольших доз недеполяризующих миорелаксантов для выполнения прекураризации.

3. При риске развития аллергической реакции (аллергическая реакция в анамнезе)

Деполяризующие нейромышечные блокаторы

Из деполяризующих миорелаксантов, применяющихся сегодня в клинической практике, используется сукцинилхолин (суксаметониум хлорид, листенон, дитилин).

Сукцинилхолин (СХ) является четвертичным аммониевым соединением, фактически представляющее собой две молекулы АХ, соединенные вместе. Два четвертичных аммониевых радикала N+(CH3)3 способны связываться с каждой из α-субъединиц постсинаптического АХ-рецептора, изменяя его структурное строение и открывая ионный канал на более длительный период, чем это отмечается при воздействии молекулы АХ. Таким образом, введение сукцинилхолина вначале приводит к деполяризации и мышечному сокращению, известному как фасцикуляция . Но поскольку этот эффект сохраняется дольше обычного, последующие потенциалы действия не могут пройти через ионные каналы и мышца расслабляется; реполяризация в этом случае наступает спонтанно вследствие блокады последующих потенциалов действия.

После начального возбуждения под влиянием сукцинилхолина натриевые каналы закрываются и не могут снова открываться, пока не произойдет реполяризация концевой пластинки. Однако реполяризация невозожна, пока миорелаксант связан с холинорецепторами. Поскольку натриевые каналы в области синапса остаются закрытыми, потенциалдействия истощается и мембрана мышечной клетки реполяризуется, что и приводит к миорелаксации. Такую блокадунервно-мышечной проводимости принято называть I фазой деполяризующего блока . При чрезмерно высокой дозедеполяризующего миорелаксанта нервно-мышечный блок начинает напоминать недеполяризующий. Этот феномен получил название II фазы деполяризующего блока

Препарат очень быстро метаболизируется плазменной холинэстеразой (бутирил-холинэстеразой или псевдохолинэстеразой). Восстановление после нейромышечного блока начинается через 3 мин. и полностью завершается в течение 12-15 мин. Применение антихолинэстеразных препаратов с целью продления нейромышечного блока при использовании сукцинилхолина противопоказано. Ингибиторы холинэстеразы значительно удлиняют I фазу деполяризующего блока 1 . Это объясняют следующим образом:

 во-первых, угнетение ацетилхолинэстеразы приводит к повышению концентрации ацетилхолина в нервном окончании, что дополнительно стимулирует деполяризацию;

 во-вторых, антихолинэстеразные препараты угнетают активность псевдохо-

линэстеразы, замедляя, таким образом, гидролиз сукцинилхолина. Некоторые антихолинэстеразные соединения, например, фосфорорганические, способны продлить действие сукцинилхолина на 20-30 минут.

Первичный метаболит СХ (сукцинилмонохолин) обладает значительно более слабым нейромышечным блоком и очень медленно расщепляется до сукциниловой кислоты и холина. Около 10% СХ выводится с мочой; его метаболизм в печени очень незначителен, а вот в плазме разрушение сукцинилхолина происходит также под влиянием других ферментов (неспецифических эстераз). Нужно отметить, что псевдохолинэстераза (ПХЭ) имеет огромную способность к гидролизу СХ, причем с высокой скоростью; вследствие этого только небольшая фракция исходной внутривенной дозы СХ достигает нейромышечного окончания и оказывает миорелаксирующее действие. Длительность нейромышечного блока СХ ограничена еще и тем, что он диффундирует через нейро-

мышечное соединение обратно в циркуляторное русло (по градиенту концентрации), где вновь попадает под действие ПХЭ. Таким образом, в данном случае имеет место энзиматический контроль начала и длительности действия препарата. При структурно аномальной плазменной холинэстеразе, что может быть обуслов лено наследственными факторами, или при снижении ее уровня в плазме длительность действия сукцинилхолина может значительно и непредсказуемо увеличиться.

Холинэстеразная недостаточность

У пациентов с атипичной холинэстеразой, обусловленной генетическими аномалиями, постепенный клиренс препарата из плазмы осуществляется неспецифическими эстеразами. В подобных случаях предлагалось вводить свежезамороженную плазму, как источник холинэстеразы, или применять для реверсии нейромышечного блока антихолинэстеразные препараты, к примеру неостигмин, однако вещества с антихолинэстеразной активностью в данном случае приводят к развитию двойного блока. Выход из этой ситуации состоит в следующем:

 тщательно контролировать нейромышечную передачу вплоть до полного исчезновения признаков остаточной миорелаксации. Удлинение нейромышечной блокады вследствие дефекта холинэстеразы не является угрожающим состоянием, однако риск осведомленности пациента о развитии такой клинической ситуации достаточно велик, особенно после окончания операции, когда анестезиолог, еще не имеющий какой-либо информации о пролонгировании нейромышечного блока, пытается разбудить больного. Поэтому еще раз следует напомнить, что анестезия и ИВЛ должны продолжаться до полного восстановления нейромышечной проводимости. В тех случаях, когда возникает необходимость проверить активность холинэстеразы в послеоперационном периоде у пациента с необычно длительным нейро-мышечным блоком после применения сукцинилхолина, следует помнить, что в присутствии данного препарата активность фермента снижается, и для того, чтобы не получить ложного результата, проводить исследование активности холинэстеразы рекомендуется через несколько дней после операции. Это время необходимо для восстановления исходной активности фермента.

Пациент, у которого обнаружено снижение активности холинэстеразы или выявлена аномальная структура этого фермента, должен быть информирован об этом. Кроме того, в медицинской документации (история болезни, выписка из нее) необходимо сделать соответствующую запись, а также поставить в известность ближайших родственников пациента.

В 1957 г. Kalow и Genest впервые предложили метод определения структурно аномальной холинэстеразы. Если плазму пациента с нормальным генотипом поместить на водяную баню и добавить к ней бензоилхолин, то вследствие химической реакции с плазменной холинэстеразой будет излучаться свет с определенной длиной волны. Это излучение можно определить спектрофотометром. Если же к плазме добавить еще и дибукаин, то произойдет ингибирование реакции бензоилхолина с холинэстеразой и излучение наблюдаться не будет. Относительный процент ингибирования называется дибукаиновым числом. Пациенты с нормальной холинэстеразой имеют высокое дибукаиновое число (от 77 до 83). У пациентов, гетерозиготных по атипичному гену, это число составляет 45-68, а у гомозиготных – менее 30.

Если к плазме вместо дибукаина добавить флюорид, то можно выявить присутствие флюоридного гена, а полное отсутствие реакции в плазме при добавлении только бензоилхолина свидетельствует о наличии у больного безмолвного гена.

Приобретенные факторы холинэстеразной недостаточности

Приобретенные факторы увеличивают продолжительность нейромышечного блока не столь выраженно, как генетические аномалии. Речь в данном случае идет скорее не о часах, а о минутах. Нужно отметить, что в этих случаях плазменная холинэстераза, как правило, структурно нормальная, и наблюдается лишь снижение ее активности или концентрации под влиянием определенных причин. К ним относятся:

заболевания печени (снижен синтез фермента);

карциноматоз, голодание, ожоги (снижен синтез фермента);

беременность: увеличение циркулирующего объема крови (эффект разведения) и понижение синтеза фермента;

антихолинэстеразные препараты (неостигмин, эдрофониум, экотиопат);

препараты, метаболизирующиеся плазменной холинэстеразой и снижающие тем самым ее доступность (этомидат, пропанидид, эстерифицированныеместные анальгетики, метотрексат, ингибиторы МАО, β-блокатор короткого действия эсмолол);

другие лекарственные препараты (метоклолпрамид, тетрагидроаминакрин, гексафлуорениум);

гипотиреоидизм ;

искусственное кровообращение, плазмаферез ;

заболевания почек с проявлением их дисфункции

Суксаметоний характеризуется высоким риском развития нежелательных явлений, иногда создающих прямую угрозу жизни. Особенно: при гиперкалиемии (острая почечная недостаточность, краш-синдром, длительная гиподинамия, ожоговая б-нь); глаукома; проникающие ранения глаз; злокачественная гипертермия в анамнезе. Прогнозировать вероятность и выраженность данных побочных эффектов, как правило, затруднительно, что заставляет многих анестезиологов отказываться от его использования. В США суксаметоний не разрешён (не рекомендован) к применению у детей и подростков «из-за высокого риска рабдомиолиза, гиперкалиемии и остановки сердца при нераспознанной миопатии». При необходимости использования суксаметония рекомендуется ознакомиться с возможными осложнениями и рекомендуемыми в данных ситуациях действиями.

Противопоказания для применения суксаметония :

1. Гиперкалиемия

2. Проникающее ранение глазного яблока

3. Внутричерепная гипертензия

4. Тяжёлая ожоговая и механическая травма

5. Длительная иммобилизация пациента и/или денервация (парезы, плегии)

6. Риск развития злокачественной гипертермии.

Нежелательно

е явление