Что такое ультразвуковое исследование. Ультразвуковое исследование как метод современной диагностики

Медицине известно множество способов различных обследований. Это может быть обычный осмотр, лабораторная диагностика, и ультразвуковое обследование. Именно о последнем методе и пойдет речь в данной статье. Вы узнаете, какие виды имеет ультразвуковое обследование. Также сможете выяснить, каким образом проводится тот или иной вид диагностики.

Ультразвуковое обследование

Для начала стоит сказать, что это за диагностика. Во время исследования используется специальный датчик, который присоединен к аппаратуре. Прибор посылает сквозь ткани человека звуковые волны. Они не могут быть слышны простому уху. Звук отражается от тканей и внутренних органов, а специалист вследствие данного процесса видит изображение на экране. Стоит отметить, что такой контакт происходит очень быстро. Изображение исследуемой области появляется сразу после того, как датчик будет приложен к телу.

Виды ультразвуковой диагностики

Ультразвуковое обследование может быть разное. Такая диагностика подразделяется на виды. Стоит отметить, что в каждом отдельном случае используется специальный датчик. Их на может быть от двух и более. Итак, ультразвуковая диагностика может быть следующей:

  • дуплексное сканирование состояния сосудов;
  • эхокардиографическое исследование;
  • эхоэнцефалографическая диагностика;
  • соноэластография;
  • трансвагинальная диагностика;
  • трансабдоминальный вид ультразвука.

В зависимости от нужного метода исследования может понадобиться предварительная подготовка пациента. Рассмотрим наиболее популярные виды ультразвукового обследования.

и придатков

Данный вид исследования проводится при помощи При этом необходимо учитывать возраст пациентки, день цикла и регулярность половой жизни.

Ультразвуковое обследование беременной женщины проводится трансабдоминальным способом. Исключение составляют лишь те представительницы прекрасного пола, у которых срок беременности очень мал.

Особой подготовки такие обследования не требуют. Необходимо лишь провести гигиенические общепринятые процедуры перед диагностикой.

УЗИ вен нижних конечностей человека

Ультразвуковое обследование сосудов проводится во время При этом оценивается проходимость вен и наличие тромбов и расширений. Также во время исследования обращается большое внимание на кровоток и состояние верхних клапанов.

Подготовка к такому обследованию не нужна. Однако будьте готовы к тому, что вам придется полностью оголить ноги. Предпочтите использование свободной и быстро снимающейся одежды.

Органы брюшины

Ультразвуковое обследование брюшной полости позволяет выявить проблемы пищеварительного тракта и соседних органов. При этой диагностике нужно заранее подготовиться к процедуре.

Если нужно осмотреть желудок, то стоит воздержаться от приема пищи до обследования. При диагностике кишечника стоит воспользоваться слабительным средством или поставить клизму. Осмотр печени, почек и желчного пузыря может быть проведен без предварительной подготовки.

Как осуществляется диагностика?

Для каждого вида обследования выбирается индивидуальный датчик. При этом всегда используется специальный гель, который облегчает скольжение прибора по телу и улучшает проходимость тканей.

В большинстве случаев диагностика проводится в лежачем положении. При этом кушетка должна быть твердой, а в кабинете необходимо создать эффект полумрака. Исключение может составлять дуплексное сканирование и УЗИ почек. Эти обследования могут проводиться в вертикальном положении пациента.

Заключение

Ультразвуковая диагностика является одной из наиболее точных. При помощи такого осмотра врач может четко увидеть состояние внутренних органов и оценить степень риска. Также диагностика ультразвуком помогает правильно поставить диагноз и назначить соответствующее лечение.

Регулярно проводите подобные осмотры. Метод УЗИ является абсолютно безопасным и не несет никакой угрозы вашему здоровью.

Ультразвуковое исследование (УЗИ) – диагностическая методика, основанная на визуализации структур организма с помощью ультразвуковых волн. При этом не нужно нарушать целостность кожи, вводить лишние химические вещества, терпеть боль и дискомфорт, что делает такой метод, как УЗИ, одним из самых распространенных в медицинской практике.

УЗИ или сонография – это такое исследование, которое основано на способности ультразвука по-разному отражаться от объектов с неодинаковой плотностью. Колебания ультразвуковой волны, генерируемой датчиком, передаются на ткани организма и таким образом распространяются на более глубокие структуры. В однородной среде волна распространяется только по прямой. При возникновении на ее пути преграды с иным сопротивлением волна частично отражается от нее и возвращается обратно, улавливаясь датчиком. От воздушных сред ультразвук отражается практически полностью, именно поэтому этот метод бесполезен при диагностике болезней легких. По этой же причине во время проведения УЗ-исследования необходимо наносить на кожу инертный гель. Этот гель убирает воздушный слой между кожей и сканером и улучшает параметры визуализации.

Виды датчиков и режимы сканирования

Основная особенность ультразвукового датчика – это его способность одновременно генерировать и улавливать ультразвук. В зависимости от методики, цели и техники проведения исследования в функциональной диагностике применяют следующие типы датчиков:

  • Линейные, которые обеспечивают высокую четкость изображений, но небольшую глубину сканирования. Этот вид датчиков применяется для УЗИ более поверхностных структур: щитовидной, молочной железы, сосудов, объемных образований в подкожной жировой клетчатке.
  • Секторные датчики применяют, когда необходимо проведение УЗИ глубинных структур из небольшой доступной площади: обычно это сканирование через межреберные промежутки.
  • Конвексные датчики характеризуются значительной глубиной визуализации (около 25 см). Этот вариант широко используется в диагностике заболеваний тазобедренных суставов, органов брюшной полости, малого таза.

В зависимости от применяемых методик и исследуемой зоны датчики бывают следующих форм:

  • трансабдоминальные – датчики, которые устанавливаются непосредственно на кожу;
  • трансректальные – вводятся в прямую кишку;
  • трансвагинальные – во влагалище;
  • трансвезикальные – в мочеиспускательный канал.

Особенности визуализации отраженных УЗ-волн зависят от выбранного варианта сканирования. Выделяют 7 основных режимов работы аппаратов УЗИ:

  • A-режим показывает одномерную амплитуду колебаний: чем выше амплитуда, тем выше коэффициент отражения. Этот режим применяется только при проведении эхоэнцефалографии (УЗИ головного мозга) и в офтальмологической практике для оценки состояния оболочек и структур глазного яблока.
  • M-режим подобен режиму A, но он показывает результат по двум осям: по вертикальной – расстояние до исследуемой области, по горизонтальной – время. Этот режим позволяет провести оценку скорости и амплитуды движения сердечной мышцы.
  • B-режим дает двухмерные изображения, на которых разные оттенки серого цвета соответствуют определенной степени отражения эхо-сигнала. С увеличением интенсивности эха изображение становится более светлым (гиперэхогенная структура). Жидкостные образования анэхогенны и визуализируются в черном цвете.
  • D-режим есть не что иное, как спектральная доплерография. В основе этого метода лежит эффект Доплера – вариабельность частоты отражения УЗ-волны от движущихся объектов. При перемещении в направлении сканера частота усиливается, в обратном направлении – уменьшается. Этот режим применяется при исследовании кровотока по сосудам, за ориентир берется частота отражения волны от эритроцитов.
  • СDК-режим, то есть цветовое доплеровское картирование, кодирует определенным оттенком разнонаправленные потоки. Поток, идущий по направлению к датчику, изображается красным цветом, в противоположную сторону – синим.
  • 3D-режим позволяет получить трехмерное изображение. Современные аппараты фиксируют в памяти сразу несколько изображений и на их основании воспроизводят трехмерную картинку. Этот вариант чаще используется при УЗИ плода, а в сочетании с доплеровским картированием – при УЗИ сердца.
  • 4D-режим дает возможность увидеть движущееся объемное изображение в режиме реального времени. Применяют этот метод также в кардиологии и акушерстве.

Плюсы и минусы

К плюсам УЗИ-диагностики относятся:

  • безболезненность;
  • отсутствие травматизации тканей;
  • доступность;
  • безопасность;
  • отсутствие абсолютных противопоказаний;
  • возможность переноски аппарата УЗИ, что важно для лежачих больных;
  • невысокая стоимость;
  • высокая информативность – процедура позволяет оценить размеры и структуру органов и своевременно выявить болезнь.

Тем не менее, УЗИ не лишено недостатков:

  • высокая операторо- и аппаратозависимость – интерпретация эхогенной картины в достаточной степени субъективна и зависит от квалификации врача и разрешающей способности аппарата;
  • отсутствие системы стандартизованной архивации – пересмотреть результаты УЗИ спустя определенное время после исследования невозможно; даже если остаются сохраненные файлы, не всегда понятно, в каком случае куда был смещен датчик, а это затрудняет интерпретацию результатов;
  • недостаточная информативность статичных изображений и снимков, переносимых на пленку.

Области применения

В настоящее время УЗИ является самым распространенным диагностическим методом в медицине. При подозрении на заболевание внутренних органов, сосудов, суставов практически всегда в первую очередь назначают именно этот вариант обследования.

Также значимо применение УЗИ при беременности для определения ее точного срока, особенностей развития плода, количества и качества околоплодных вод, для оценки состояния женской репродуктивной системы.

УЗИ используют в качестве:

  • планового обследования;
  • экстренной диагностики;
  • наблюдения в динамике;
  • диагностики во время и после операции;
  • контрольного метода при выполнении инвазивных процедур (пункция, биопсия);
  • скрининга – профилактического обследования, необходимого для раннего выявления болезни.

Показания и противопоказания

Показанием для проведения УЗ-диагностики служит подозрение на следующие изменения в органах и тканях:

  • воспалительный процесс;
  • новообразования (опухоли, кисты);
  • наличие камней и кальцинатов;
  • смещение органа;
  • травматические повреждения;
  • нарушение функции органа.

Раннее выявление аномалий развития плода – главное, зачем делают УЗИ при беременности.

УЗИ назначают для обследования следующих органов и систем:

  • пищеварительная система (поджелудочная железа, паренхима печени, желчевыводящие пути);
  • мочеполовая система (патологии половых органов, почек, мочевого пузыря, мочеточников);
  • головной мозг;
  • глазное яблоко;
  • железы внутренней секреции (щитовидная железа, надпочечники);
  • костно-мышечный аппарат (суставы, позвоночник);
  • сердечно-сосудистая система (при нарушении работы сердечной мышцы и заболеваниях сосудов).

Основное значение УЗИ для медицины заключается в раннем выявлении патологии и, соответственно, в своевременном лечении болезни.

Абсолютных противопоказаний к проведению УЗИ нет. Относительным противопоказанием можно считать кожные заболевания и повреждения в области, куда нужно ставить датчик. Решение о том, можно ли назначать этот метод, принимается в каждой ситуации индивидуально.

Подготовка и ход УЗ-исследования

Специальная подготовка необходима только при отдельных вариантах УЗ-диагностики:

  • При трансабдоминальном УЗИ органов малого таза очень важно предварительно наполнить мочевой пузырь, выпив большой объем жидкости.
  • Непосредственно перед проведением трансректального УЗИ простаты железы делают клизму.
  • Исследование органов брюшной полости и малого таза проводится натощак. За день до него ограничивают употребление продуктов, вызывающих метеоризм. В некоторых случаях, по рекомендации врача, принимают специальные препараты, регулирующие газообразование: эспумизан, мезим, креон. УЗИ Проведение процедуры и расшифровка результатов

Как именно делают УЗИ, зависит от исследуемой области и техники проведения. Обычно обследование проводится лежа. УЗИ почек проводят в положении на боку, а затем стоя для оценки их смещаемости. На кожу наносится инертный гель, по которому скользит датчик. Врач перемещает этот датчик не хаотично, а в строгом порядке, чтобы рассмотреть орган под различными углами.

УЗИ простаты проводится с использованием специального датчика трансректально (через прямую кишку). УЗИ мочевого пузыря может выполняться через мочеиспускательный канал – трансвезикально, сонография органов малого таза – с помощью влагалищного датчика. Возможно также и трансабдоминальное УЗИ женских половых органов, но оно обязательно проводится с наполненным мочевым пузырем.

Структура органа визуализируется на экране монитора в черно-белом варианте, кровоток – в цветном. Результаты заносятся в специальную форму в письменном либо печатном виде. Обычно результат отдают на руки сразу после завершения процедуры, но это зависит от того, как быстро расшифровывается УЗИ.

При проведении УЗИ расшифровка результатов проводится по следующим показателям:

  1. Размеры и объем органа. Увеличение или уменьшение обычно является признаком патологии.
  2. Структура ткани органа: наличие уплотнений, кист, полостей, кальцинатов. Неоднородная структура может быть признаком воспалительного процесса.
  3. Форма органа. Ее изменение может быть признаком воспаления, наличия объемного образования, травматического повреждения.
  4. Контуры. В норме визуализируются ровные и четкие контуры органа. Бугристость указывает на наличие объемного образования, размытость контура – на воспалительный процесс.
  5. Эхогенность. Поскольку УЗ-методика основана на принципе эхолокации, то это важный оценочный критерий. Гипоэхогенные участки являются признаком скопления жидкости в тканях, гиперэхогенные – плотных включений (кальцинаты, камни).
  6. Функциональные показатели работы органа: скорость кровотока, сердечные сокращения.

Иногда назначают повторное УЗИ, чтобы оценить изображение в динамике и получить более полную информацию о течении заболевания.

Ультразвуковое исследование является первым «рубежом обороны» на пути многих заболеваний благодаря доступности и информативности. В ситуациях, когда нужно оценить не только структуру, но и функцию органа, УЗИ даже более предпочтительно, чем МРТ или МСКТ. И конечно, не стоит пренебрегать профилактическими УЗ-обследованиями, которые помогут выявить заболевание на ранней стадии и вовремя начать лечение.

Ультразвуковое исследование (УЗИ, сонография) является наиболее широко используемым методом визуализации в медицинской практике, что обусловлено его значительными преимуществами: отсутствием лучевой нагрузки, неинвазивностью, мобильностью и доступностью. Метод не требует применения контрастных веществ, и его результативность не зависит от функционального состояния почек, что имеет особое значение в урологической практике.

В настоящее время в практической медицине используются ультразвуковые сканеры, работающие в режиме реального времени, с построением изображения в серой шкале. В действии приборов реализуется физический феномен эхолокации. Отраженная ультразвуковая энергия улавливается сканирующим датчиком и преобразуется в электрическую, которая опосредованно формирует визуальный образ на экране ультразвукового прибора в палитре серых оттенков как в двух-, так и в трехмерном изображении.

При прохождении ультразвуковой волны через гомогенную жидкостную среду отраженная энергия минимальна, поэтому на экране формируется изображение в черном цвете, что носит название анэхогенной структуры. В том случае, когда жидкость содержится в замкнутой полости (киста), дальняя от источника ультразвука стенка визуализируется лучше, а непосредственно за ней формируется эффект дорсального усиления, являющийся важным признаком жидкостного характера исследуемого образования. Высокая гидрофильность тканей (зоны воспалительного отека, опухолевая ткань) также приводит к формированию изображения в оттенках черного или темно-серого цвета, что связано с малой энергией отраженного ультразвука. Такая структура носит название гипоэхогенной. В отличие от жидкостных структур гипоэхогенные образования не имеют эффекта дорсального усиления. С увеличением импеданса исследуемой структуры мощность отраженной ультразвуковой волны возрастает, что сопровождается формированием на экране структуры все более светлых оттенков серого цвета, называемых гиперэхогенными. Чем более значительной эхоплотностью (импедансом) обладает исследуемый объем, тем более светлыми оттенками характеризуется сформированное на экране изображение. Наибольшая отраженная энергия формируется при взаимодействии ультразвуковой волны и структур, содержащих кальций (камень, кость) или воздух (газовые пузыри в кишечнике).

Наилучшая визуализация внутренних органов возможна при минимальном содержании газов в кишечнике, для чего УЗИ выполняют натощак или с использованием специальных методик, приводящих к уменьшению метеоризма. Локация органов малого таза трансабдоминальным доступом возможна только при тугом заполнении мочевого пузыря, который в данном случае играет роль акустического окна, проводящего ультразвуковую волну от поверхности тела пациента до исследуемого объекта.


В настоящее время в работе ультразвуковых сканеров используют датчики трех модификаций с различной формой лоцирующей поверхности: линейные, конвексные и секторные - с частотой локации от 2 до 14 МГц. Чем выше частота локации, тем большей разрешающей способностью обладает датчик и тем крупнее масштаб полученного изображения. При этом датчики с высокой разрешающей способностью пригодны для исследования поверхностно расположенных структур. В урологической практике это наружные половые органы, поскольку мощность ультразвуковой волны по мере увеличения частоты существенно падает.

Задача врача при проведении УЗИ-диагностики - получить четкое изображение объекта исследования. С этой целью используют различные сонографические доступы и специальные модифицированные датчики. Сканирование, проводимое через кожные покровы, носит название транскутанное. Транскутанное ультразвуковое сканирование органов живота, малого таза традиционно называется трансадбоминальной сонографией.

Кроме транскутанного исследования часто используются эндокорпоральные способы сканирования, при которых датчик помещается в тело человека через физиологические отверстия. Наиболее широкое применение имеют трансвагинальные и трансректальные датчики, служащие для исследования органов малого таза. При проведении трансвагинального УЗИ визуализации доступны мочевой пузырь, внутренние половые органы, средне- и нижнеампулярные отделы толстой кишки, Дугласово пространство, частично уретра и дистальные отделы мочеточников. При трансректальном УЗИ визуализируются внутренние половые органы вне зависимости от пола обследуемого пациента, мочевой пузырь, уретра на всем ее протяжении, пузырно-мочеточниковые сегменты и тазовые отделы мочеточников.

Трансуретральный доступ не получил широкого распространения ввиду значительного перечня противопоказаний.

В настоящее время все чаще используются ультразвуковые сканеры, оснащенные миниатюрными датчиками высокого разрешения и вмонтированные в проксимальный конец гибкого уретероскопа. Данный метод, носящий название эндолюминальная сонография, позволяет провести исследование всех отделов мочевыводящих путей, что привносит ценную диагностическую информацию при заболеваниях мочеточника, чашечно-лоханочной системы почки.

УЗИ сосудов различных органов возможно благодаря эффекту Доплера, который основан на регистрации мелких перемещающихся частиц. В клинической практике данный метод был использован в 1956 году Satomuru при УЗИ сердца. В настоящее время применяются несколько ультразвуковых методик для исследования сосудистой системы, в основе которых лежит использование эффекта Доплера,- цветное доплеровское картирование, энергетический доплер. Данные методики дают представление о сосудистой архитектонике обследуемого объекта. Спектральный анализ позволяет оценивать распределение сдвига доплеровских частот, определять количественные скоростные характеристики сосудистого кровотока. Сочетание серошкального ультразвукового изображения, цветного доплеровского картирования и спектрального анализа носит название триплексное сканирование.

Доплеровские методики в практической урологии применяются для решения широкого круга диагностических вопросов. Наиболее распространена методика цветного доплеровского картирования. Определение хаотичных сосудистых структур в тканевом объемном образовании почки в большинстве случаев свидетельствует о его злокачественном характере. При выявлении асимметричного увеличения кровоснабжения патологических гипоэхогенных участков в простате значительно возрастает вероятность ее злокачественного поражения.

Спектральный анализ кровотока используется в дифференциальной диагностике вазоренальной гипертензии. Изучение скоростных показателей на различных уровнях сосудов почек: от основной почечной артерии до аркуатных артерий - позволяет определить причину артериальной гипертензии. Спектральный доплеровский анализ применяется в дифференциальной диагностике эректильной дисфункции. Данная методика проводится с использованием фармакологической пробы. Методическая последовательность включает определение скоростных показателей кровотока по кавернозным артериям и тыльной вене полового члена в состоянии покоя. В дальнейшем, после интракавернозного введения препарата (папаверин, кавердэскт и др.), проводится повторное измерение пенильного кровотока с определением индексов. Сопоставление полученных результатов позволяет не только установить диагноз вазогенной эректильной дисфункции, но и дифференцировать наиболее заинтересованное сосудистое звено - артериальное, венозное. Описано также применение таблетированных препаратов, вызывающих состояние тумесценции.

В соответствии с диагностическими задачами виды УЗИ подразделяются на скрининговые, инициальные и экспертные. Скрининговые исследования, направленные на выявление доклинических стадий заболеваний, относятся к превентивной медицине и проводятся здоровым людям, составляющим группу риска по каким-либо заболеваниям. Инициальное (первичное) УЗИ проводится пациентам, обратившимся за медицинской помощью в связи с возникновением определенных жалоб. Цель его - установить причину, анатомический субстрат имеющейся клинической картины. Диагностической задачей экспертного УЗИ является не только подтверждение диагноза, но в большей степени установление степени распространенности и стадии процесса, вовлечение других органов и систем в патологический процесс.

УЗИ почек. Основным доступом при локации почек является кособоковое расположение датчика по средней подмышечной линии. Данная проекция дает изображение почки, сопоставимое с изображением при рентгенологическом исследовании. При сканировании по длинной оси органа почка имеет вид овального образования с четкими, ровными контурами (рис. 4.10).

Полипозиционное сканирование с последовательным перемещением плоскости сканирования позволяет получить информацию обо всех отделах органа, в котором дифференцируются паренхима и центрально расположенный эхокомплекс. Кортикальньгй слой имеет равномерную, несколько повышенную по сравнению с мозговым веществом эхогенность. Мозговое вещество, или пирамиды, на анатомическом препарате почки имеют вид треугольных структур, обращенных основанием к контуру почки и вершиной к полостной системе. В норме видимая при УЗИ часть пирамиды составляет около трети от толщины паренхимы.

Рис. 4.10. Сонограмма. Нормальное строение почки


Рис. 4.11. Сонограмма. Солитарная киста почки:

1 - нормальная почечная ткань; 2 – киста

Центрально расположенный эхокомлекс характеризуется значительной эхоплотностью по сравнению с другими отделами почки. В формировании изображения центрального синуса принимают участие такие анатомические структуры, как элементы полостной системы, сосудистые образования, лимфатическая дренажная система, жировая ткань. У здоровых людей в отсутствие водной нагрузки элементы полостной системы, как правило, не дифференцируются, возможна визуализация отдельных чашек до 5 мм. В условиях водной нагрузки иногда визуализируется лоханка, как правило, она имеет форму треугольника размером не более 15 мм.

Представление о состоянии сосудистой архитектоники почки дает цветное доплеровское картирование (рис. 35, см. цв. вклейку).

Характер очаговой патологии почки определяется сонографической картиной выявленных изменений - от анэхогенного образования с дорсальным усилением до гиперэхогеннего образования, дающего акустическую тень. Анэхогенное жидкостное образование в проекции почки по своему происхождению может быть кистой (рис. 4.11) или расширением чашечек и лоханки – гидронефрозом (рис. 4.12).


Рис. 4.12. Сонограмма. Гидронефроз: 1 - выраженное расширение лоханки и чашечек со сглаживанием их контуров; 2 - резкое истончение паренхимы почки


Рис. 4.13. Сонограмма. Опухоль почки: 1 - опухолевый узел; 2 - нормальная почечная ткань

Очаговое образование низкой плотности без дорсального усиления в проекции почки может свидетельствовать о локальном повышении гидрофильности ткани. Такие изменения могут быть обусловлены либо воспалительными изменениями (формирование карбункула почки), либо наличием опухолевой ткани (рис. 4.13).

Картина эхоплотного образования без дорсального усиления характерна для наличия тканевой структуры с высокой отражающей способностью, такой как жир (липома), фиброзная ткань (фиброма) или смешанная структура (ангиомиолипома). Эхоплотная структура с формированием акустической тени свидетельствует о наличии кальция в выявленном образовании. Локализация такого образования в полостной системе почки или мочевыводящих путях говорит о имеющемся камне (рис. 4.14).


Рис. 4.14. Сонограмма. Камень почки: 1 - почка; 2 - камень; 3 - акустическая

тень от камня

УЗИ мочеточника. Инспекция мочеточника проводится при продвижении датчика по месту его анатомической проекции. При трансабдоминальном доступе наилучшими для визуализации местами являются пиелоуретеральный сегмент и место пересечения мочеточника с подвздошными сосудами. В норме мочеточник, как правило, не визуализируется. Тазовый отдел его оценивается при трансректальном УЗИ, когда возможна визуализация пузырно-мочеточникового сегмента.

УЗИ мочевого пузыря возможно только при его адекватном наполнении мочой, когда складчатость слизистого слоя уменьшается. Визуализация мочевого пузыря возможна трансабдоминальным (рис. 4.15), трансректальным (рис. 4.16) и трансвагинальным доступом.

В урологической практике предпочтительной является комбинация трансабдоминального и трансректального доступов. Первый позволяет судить о состоянии мочевого пузыря в целом. Трансректальный доступ дает ценную информацию о нижних отделах мочеточников, уретре, половых органах.

При УЗИ стенка мочевого пузыря имеет трехслойное строение. Средний гипоэхогенный слой представлен срединным слоем детрузора, внутренний гиперэхогенный слой является единым изображением внутреннего слоя детрузора и уротелиальной выстилки, наружный гиперэхогенный слой - изображением наружного слоя детрузора и адвентиции.


Рис. 4.15. Трансабдоминальная сонограмма мочевого пузыря в норме


Рис. 4.16. Трансректальная сонограмма мочевого пузыря в норме

При адекватном наполнении мочевого пузыря различают его анатомические отделы - дно, верхушку и боковые стенки. Шейка мочевого пузыря имеет вид неглубокой воронки. Моча, находящаяся в мочевом пузыре, является полностью анэхогенной средой, без взвеси. Иногда можно наблюдать поступление болюса мочи из устья мочеточников, что связано с возникновением турбулентного потока (рис. 4.17).

При трансректальном сканировании лучше визуализируется нижний сегмент мочевого пузыря. Пузырно-мочеточниковый сегмент представляет собой структуру, состоящую из юкставезикального, интрамурального отделов мочеточника и зоны мочевого пузыря рядом с устьем (рис. 4.18). Устье мочеточника определятся в виде щелевидного образования, несколько возвышающегося над внутренней поверхностью мочевого пузыря. При прохождении болюса мочи устье приподнимается, открывается, и струя мочи поступает в полость мочевого пузыря. По данным трансректального УЗИ можно оценивать моторную функцию пузырно-мочеточникового сегмента. Частота сокращений мочеточника в норме составляет 4-6 в минуту. При сокращении мочеточника его стенки полностью смыкаются, при этом диаметр юкставезикального отдела не превышает 3,5 мм. Сама стенка мочеточника лоцируется в виде эхоплотной однородной структуры шириной около 1,0 мм. В момент прохождения болюса мочи мочеточник расширяется и достигает 3-4 мм.

Рис. 4.17. Трансректальная сонограмма. Выброс мочи (1) из устья мочеточника (2) в мочевой пузырь (3)


Рис. 4.18. Трансректальная сонограмма пузырно-мочеточникового сегмента в норме: 1 - мочевой пузырь; 2 - устье мочеточника; 3 - интрамуральный отдел мочеточника; 4 - юкставезикальный отдел мочеточника

УЗИ предстательной железы. Визуализация предстательной железы возможна при использовании как трансабдоминального (рис. 4.19), так и трансректального (рис. 4.20) доступа. Предстательная железа в поперечном скане представляет собой образование овальной формы, при сканировании в сагиттальном скане имеет форму треугольника с широким основанием и заостренным апикальным концом.


Рис. 4.19. Трансабдоминальная сонограмма. Предстательная железа в норме


Рис. 4.20. Трансректальная сонограмма. Предстательная железа в норме

Периферическая зона является преобладающей в объеме простаты и лоцируется в виде однородной эхоплотной ткани в заднелатеральной части простаты от основания до верхушки. Центральная и периферическая зоны обладают меньшей эхоплотностью, что позволяет дифференцировать эти отделы простаты. Переходная зона располагается кзади от уретры и охватывает простатическую часть семявыбрасывающих протоков. Суммарное изображение этих отделов простаты в норме составляет около 30 % объема железы.

Визуализация сосудистой архитектоники предстательной железы осуществляется с помощью ультразвукового доплеровского исследования (рис. 4.21).


Рис. 4.21. Сонодоплерограмма предстательной железы в норме

Асимметричное увеличение кровоснабжения гипоэхогенных участков в простате значительно повышает вероятность ее злокачественного поражения.

УЗИ семенных пузырьков и семявыносящих протоков. Семенные пузырьки и семявыносящие протоки лоцируются кзади от простаты. Семенные пузырьки в зависимости от плоскости сканирования имеют вид конусообразных или овальных образований, прилежащих непосредственно к задней поверхности простаты (рис. 4.22). В норме их размер составляет около 40 мм по длиннику и 20 мм в поперечнике. Семенные пузырьки характеризуются однородной структурой низкой плотности.

Рис. 4.22. Трансректальная сонограмма: семенные пузырьки (1) и мочевой пузырь (2) в норме

Семявыносящие протоки лоцируются в виде эхоплотных трубчатых структур диаметром 3-5 мм от места впадения в простату вверх до физиологического изгиба на уровне тела мочевого пузыря, когда проток меняет направление от внутреннего отверстия пахового канала к простате.

УЗИ мочеиспускательного канала. Мужская уретра представлена протяженной структурой от шейки мочевого пузыря в направлении верхушки и имеет неоднородную структуру низкой эхоплотности. Место впадения семявыбрасывающего протока в простатическую уретру соответствует проекции семенного бугорка. За пределами простаты уретра продолжается в направлении мочеполовой диафрагмы в виде вогнутой по большому радиусу дуги. В проксимальных отделах, в непосредственной близости от верхушки простаты, уретра имеет утолщение, соответствующее рабдосфинктеру. Ближе к мочеполовой диафрагме кзади от уретры определяются парные периуретральные (куперовы) железы, имеющие вид симметричных округлых гипоэхогенных образований диаметром до 5 мм.

УЗИ органов мошонки. При УЗИ органов мошонки используют датчики высокой разрешающей способности, от 5 до 12 мГц, что позволяет хорошо видеть мелкие структуры и образования. В норме яичко определяется в виде гиперэхогенного образования овальной формы с четкими, ровными контурами (рис. 4.23).


Рис. 4.23. Сонограмма мошонки. Яичко в норме

Структура яичка характеризуется как однородная гиперэхогенная ткань. В центральных отделах его определяется линейная структура высокой плотности, ориентированная по длиннику органа, что соответствует изображению средостения яичка. В краниальных отделах яичка хорошо визуализируется головка придатка, имеющая форму, близкую к треугольной. К каудальному отделу яичка прилежит хвост придатка, повторяющий форму яичка. Тело придатка визуализируется неотчетливо. По своей эхогенности придаток яичка близок к эхогенности самого яичка, однороден, имеет четкие контуры. Межоболочечная жидкость анэхогенная, прозрачная, в норме определяется в виде минимальной прослойки от 0,3 до 0,7 см преимущественно в проекции головки и хвоста придатка.

Малоинвазивные диагностические и оперативные вмешательства под сонографическим контролем. Внедрение ультразвуковых сканеров позволило значительно расширить арсенал малоинвазивных методов в диагностике и лечении урологических заболеваний. К ним относятся:

диагностические:

■пункционная биопсия почки, предстательной железы, органов мошонки;

■ пункционная антеградная пиелоуретерография; лечебные:

■ пункция кист почки;

■ пункционная нефростомия;

■ пункционное дренирование гнойно-воспалительных очагов в почке, забрюшинной клетчатке, предстательной железе и семенных пузырьках;

■ пункционная (троакарная) эпицистостомия.

Диагностические пункции по способу получения материала подразделяются на цитологические и гистологические.

Цитологический материал получают при проведении тонкоигольной аспирационной биопсии. Более широкое применение имеет гистологическая биопсия, при которой забираются участки (столбики) ткани органа. Таким образом взятый полноценный гистологический материал может быть использован для постановки морфологического диагноза, проведения иммуногистохимического исследования и определения чувствительности к химиопрепаратам.

Способ получения диагностического материала определяется расположением интересующего органа и возможностями ультразвукового прибора. Пункции образований почек, забрюшинных объемных образований выполняются с использованием трансабдоминальных датчиков, которые позволяют визуализировать всю зону пункционного вмешательства. Пункция может проводиться по методике «свободная рука», когда врач совмещает траекторию иглы и зоны интереса, работая пункционной иглой без фиксирующей направляющей насадки. В настоящее время преимущественно используют методику с фиксацией биопсийной иглы в специальном пункционном канале. Направляющий канал для пункционной иглы предусмотрен либо в специальной модели ультразвукового датчика, либо в специальной пункционной насадке, которая может крепиться к обычному датчику. Пункция органов и патологических образований малого таза осуществляется в настоящее время только с использованием трансректальных датчиков со специальной пункционной насадкой. Специальные функции ультразвукового прибора позволяют наилучшим образом совмещать зону интереса с траекторией пункционной иглы.

Объем пункционного материала зависит от конкретной диагностической задачи. При диагностической пункции простаты в настоящее время используют веерную технологию с забором не менее 12 трепан-биоптатов. Данная методика позволяет распределить зоны забора гистологического материала равномерно по всем отделам простаты и получить адекватный объем исследуемого материала. При необходимости объем диагностической биопсии расширяют - увеличивают число трепан-биоптатов, биопсируют близлежащие органы, в частности семенные пузырьки. При повторных биопсиях простаты число трепан-биоптатов, как правило, удваивают. Такая биопсия носит название сатурационной. При подготовке биопсии простаты осуществляют профилактику воспалительных осложнений, кровотечений, подготавливают ампулу прямой кишки. Анестезию выполняют с помощью ректальных инстиллятов, применяют проводниковую анестезию.

Лечебные пункции под сонографическим контролем используются для эвакуации содержимого из патологических полостных образований - кист, абсцессов. В зависимости от конкретной задачи в освобожденную от патологического содержимого полость вводят лекарственные препараты. При кистах почек применяют склерозанты (этиловый спирт), что приводит к уменьшению объема кистозного образования вследствие повреждения его внутренней выстилки. Использование данного метода возможно только после проведения кистографии, позволяющей убедиться в отсутствии связи кисты с чашечно-лоханочной системой почки. Применение склеротерапии не исключает рецидива заболевания. После пункции абсцесса любой локализации пункционный канал расширяют, гнойную полость опорожняют, промывают растворами антисептиков и дренируют.

Сонографический контроль при выполнении чрескожной нефростомии позволяет с максимальной точностью пунктировать чашечно-лоханочную систему почки и установить нефростомический дренаж.

В настоящее время в клинической практике применяют эхографический метод, основанный на регистрации волн, отраженных от границ раздела сред с различным акустическим сопротивлением, и метод, основанный на эффекте Допплера, т.е. регистрации изменения частоты ультразвуковой волны, отраженной от движущихся границ между средами. Последняя методика позволяет получить информацию о гемодинамике органов и систем и применяется в основном для исследования сердца и сосудов.

При исследовании органов мочеполовой системы используется главным образом эхографический метод регистрации ультразвука, который по характеру воспроизведения разделяется на:

1) одномерную эхографию (А-метод), который позволяет получить информацию об объекте лишь в одном направлении (одном измерении) и, таким образом, не дает полного представления о форме и величине исследуемого объекта;
2) двухмерную эхографию (ультразвуковое сканирование, В-метод), который в отличие от одномерной позволяет получить двухмерное плоскостное изображение объекта в виде эхотомографического среза (скан);
3) УЗИ в режиме «М» (motion - движение), при котором движение отраженных ультразвуковых волн разворачивается во времени, что дает ложное двухмерное изображение, когда по горизонтали регистрируется истинный размер органа по пути распространения ультразвуковой волны, а по вертикали — время. Скорость развертки во времени и масштаб изображения на экране меняются произвольно.

Количество и качество отраженных волн обусловлено физическими процессами, протекающими при прохождении ультразвука через среду. Чем больше разница в акустическом сопротивлении сред, тем больше ультразвуковых волн отражается на границе их раздела. Поскольку акустическое сопротивление среды является функцией плотности среды, количество и качество отраженных ультразвуковых волн объективно передают детали строения внутренних органов и тканей в зависимости от их плотности.

С одной стороны, ввиду чрезвычайно большой разности в акустическом сопротивлении тканей и воздуха на границе раздела этих сред ультразвук практически весь отражается обратно, и поэтому получить информацию о тканях, лежащих за прослойкой воздуха, часто не представляется возможным. С другой стороны, наилучшие условия распространения ультразвука создают жидкости любого химического состава, и образования, наполненные жидкостью, визуализируются особенно легко.

При проведении УЗИ необходимо помнить о реверберации — появлении добавочного изображения на расстоянии, вдвое больше от истинного. В основе этого феномена лежит повторное отражение части воспринимаемых волн от поверхности датчика иди от границы полого органа, в результате чего ультразвуковая волна повторно совершает свой путь, что вызывает мнимое отражение. Недооценка этого феномена может привести к серьезным диагностическим ошибкам.

Частота ультразвука, применяемого с диагностической целью, находится в пределах 0,8—7 МГц, причем существует следующая закономерность: чем выше частота ультразвука, тем больше разрешающая способность; усиливается поглощение ультразвука тканями и соответственно падает проникающая способность. С уменьшением частоты ультразвука наблюдается обратная закономерность, поэтому для исследования близко расположенных объектов применяют более высокочастотные датчики (5—7 МГц), а для глубоко расположенных и больших по размерам органов приходится использовать низкочастотные датчики (2,5—3,5 МГц).

УЗИ проводят в затемненной комнате, так как при ярком освещении глаз человека не воспринимает серые тона на телевизионном экране. В зависимости от задач исследования выбирается тот или иной режим работы прибора. Для исключения прослойки воздуха между датчиком и телом больного кожу в области исследования покрывают иммерсионной средой.

Ультразвуковое исследование (УЗИ) – одна из распространенных методик диагностики, при которой используются ультразвуковые волны для получения изображения внутренних органов человека. В отличие от других подобных методик, УЗИ не вызывает дискомфорта и негативного влияния на организм.

Подготовка пациента к УЗИ

Для проведения оптимально точной диагностики путем ультразвукового исследования, пациенту необходимо проделать ряд манипуляций и предписаний перед проведением УЗИ, а именно:


Процесс проведения УЗИ

В назначенное время медицинский персонал приглашает пациента разместится на специальной кушетке.

  • живот;
  • молочные железы;
  • и т.д.

Врач обрабатывает кожу исследуемого специальным гелем, который помогает качественно провести ультразвуковые волны сквозь тело. Далее в различных местах тела пациента врачом прижимается чувствительный датчик, который ретранслирует изображение внутренних органов на мониторе аппарата.

Стоимость УЗИ

Стоимость ультразвукового исследования зависит от ряда факторов, которые устанавливаются индивидуально, в соответствии с используемой методикой и диагнозом пациента. Более детальную у наших специалистов.

Несомненно, каждый человек ищет самые лучшие способы исследования его организма. Именно поэтому мы готовы помочь Вам. Для этого Вам необходимо обратится за консультацией к нашим специалистам, заполнив .